

Designing a Low- Pass Fir Digital Filter By Using Rectangular Window and Bartlett Window Technique

¹Nikhil Agrawal, ²G laxmi sagar, ³Rahul Suryawansi and ⁴Asst. Prof Mr. Pranay Kumar Rahi

¹Nikhil Agrawal, Department of Electrical & Electronics Engineering, Institute of Technology Korba, Chhattisgarh, India.

nikhildhanondiya@gmail.com

²G laxmi sagar, Department of Electrical & Electronics Engineering, Institute of Technology Korba, Chhattisgarh, India.

glaxmisagar@gmail.com

³ Rahul Suryawanshi, Department of Electrical & Electronics Engineering, Institute of Technology Korba, Chhattisgarh, India.

Survawanshirahul996@gmail.com

⁴Asst. Prof Mr. Pranay Kumar Rahi, Department of Electrical & Electronics Engineering, Institute of Technology Korba, Chhattisgarh, India.

Praney_rahi@yahoo.com

ABSTRACT

The aim of our paper is to design FIR filter using Rectangular and Bartlett Window Techniques of order 10. In this paper we represent the significance of filter in our daily life. The analysis of magnitude and phase response of proposed FIR low pass filter are performed using MATLAB simulation. The result window technique provides better result in term of magnitude and phase response of low pass FIR filter.

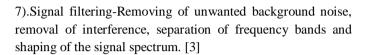
Keywords— DSP, FIR, Low-Pass Fir Digital Filter, Rectangular Window and Bartlett Window.

1. INTRODUCTION

A signal carries information, and the objective of signal processing is to extract useful information carried by the signal. The method of information extraction depends on the type of signal and the nature of the information being carried by the signal [1].

Digital Signal Processing (DSP) is an important (imp) field of study that has come about due to advances in communication theory, digital computer technology, and consumer devices. There is always a driving need to make thing better and DSP provides many techniques for doing this. For example, people enjoy music and to download new songs. However, with slow Internet connection speeds (typically 56 kilobits per second for a dial-up modem), downloading a song could take hours. With MP3 compression software, though, the size of the song is reduced by as much as 90%, and can be downloaded in a matter of minutes. The MP3 version of the song is not the

same as the original, but is a "good enough" approximation that most users cannot distinguish from the original. [2]


Applications of DSP in area wise are as following:-

- 1). Telecommunication- Echo cancellation in telephone networks, equalization, telephone dialing application, modems, line repeaters, channel multiplexing, data encryption, video conferencing, cellular phone and FAX.
- 2). Military- Radar signal processing, sonar signal processing, navigation, secure communications and missile guidance.
- 3). Consumer electronics- Digital Audio/TV, electronic music synthesizer, educational toys, FM stereo application and sound recording applications.

processingrepresentation, image 4).Image **Image** compression, image enhancement, image restoration and image analysis.

5).Speech	processing-	Speech	analysis	methods	are	used	in
automatic	speech recog	gnition, s	peaker ve	erification	and	speak	cer
identificat	ion.						

6).	Medicine-	Medical	dia	agnostic	instru	mentation	such	as
con	nputerized	tomograp	hy	(CT),	X-ray	scanning,	Pati	ent
monitoring and X-ray storage/enhancement.								

WINDOW TECHINIQUES 2.

The desired frequency response of any digital filter is periodic in frequency and can be expanded in a fourier series, i.e.

$$\mathbf{H}_{\mathbf{d}}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h_{\mathbf{d}}(n)e^{-j\omega}$$
 (1)

$$\mathbf{H}_{\mathbf{d}}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h_{\mathbf{d}}(n)e^{-j\omega}$$
(1)
where, $\mathbf{h}(\mathbf{n}) = \frac{1}{2\pi} \int_{0}^{2\pi} H(e^{j\omega})e^{j\omega n}d\omega$ (2)

The Fourier coefficient of the series h(n) are identical to the impulse response of a digital filter. There are two difficulties with the implementation of above equation for designing a digital filter. First, the impulse response is of infinite duration and second, the filter is non-causal and unrealizable. No finite amount of delay can make the impulse response realizable. Hence the filter resulting from a Fourier series representation of $H(e^{j\omega})$ is an unrealizable IIR filter.

2.1 **BARTLETT WINDOW FUNCTION**

The window function of a non-causal Bartlett window is expressed by

$$\mathbf{w}_{\text{Bart}}(\mathbf{n}) = \begin{cases} 1 + n, -\frac{M-1}{2} < n < 1 \\ 1 - n, 1 < n < \frac{M-1}{2} \end{cases}$$
 (3)

RECTANGULAR WINDOW FUNCTION

The weighting function for the rectangular window is given by

$$W_{R}(n) = \begin{cases} 1 for |n| \le \frac{M-1}{2} \\ 0, otherwise \end{cases}$$
 (4)

SIMULATION AND RESULT

PARAMETER	VALUES
Sampling Frequency(F _s)	1950
Cut off Frequency(F _c)	450

Order(N)	10
01361(11)	10

Table 1: Parameter Specification

Filter coefficient	Window Techniques				
h(n)	Rectangular	Bartlett			
h(0)=h(10)	0.0522830	0			
h(1) =h(9)	0.0369040	0.0080511			
h(2)= h(8)	0.0990004	0.0431966			
h(3)= h(7)	0.0380084	0.0248762			
h(4)= h(6)	0.3153271	0.2751715			
h(5)	0.4605716	0.5023998			

Table2: Filter coefficients of Rectangular & Bartlett Window **Techniques**

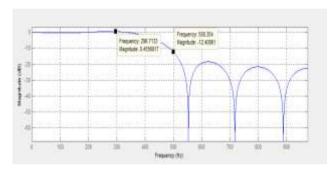


Figure 1: Magnitude response of Rectangular Window Technique

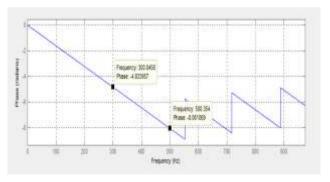


Figure 2: Phase response of Rectangular Window Technique



Figure 3: Filter coefficient of Rectangular Window Technique

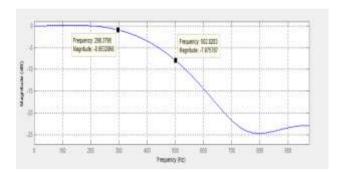


Figure 4: Magnitude response of Bartlett Window Technique

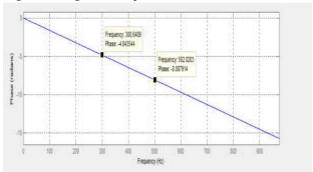


Figure 5: Phase response of Bartlett Window Technique

Figure 6: Filter coefficient of Bartlett Window Technique

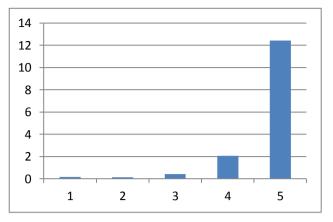


Figure 7: Magnitude and Frequency plot of Rectangular Window Technique.

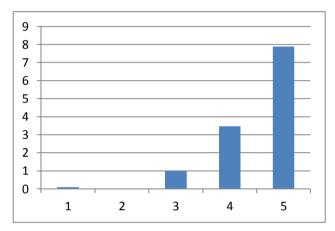


Figure 8: Magnitude and Frequency plot of Bartlett Window Technique

4. CONCLUSIONS

By analysis we conclude that Rectangular Window Technique has better response than Bartlett Window Technique

REFERENCES

- [1]. Sanjit K. Mitra "digital signal processing" a computer-based approach second edition McGraw Hill, pp.1.
- [2].Michael Weeks, "digital signal processing" Using MATLAB and Wavelets, 2007 edition, Infinity Science Press, pp.1
- [3].S Salivahanan, C Gnanapriya, A Vallavaraj, "digital signal processing" Tata McGraw-Hill, second edition pp.3,443-448.
- [4].John G. Proakis, Dimitris G. Manolakis, "digital signal processing" PEAESON, fourth edition
- [5]. Sen M Kuo, Bob H Lee, "digital signal processing" John Wiley & Sons, 2001 edition
- [6].Richars G. lyons, Understandingdigital signal processing "PEARSON, second edition.
- [7].A Nagoor Kani, "digital signal processing" McGraw-Hill Education, second edition.

- [8].Alan V. Oppenheim, Ronald W. Schafer, "digital signal processing", PEARSON education, 2015 edition.
- [9]. Steuen W. Smith, "digital signal processing", Elsevier, 2005 edition.
- [10]. Emmanuel Ifeachor, Barry W. Jervis, "digital signal processing" PEARSON, second edition

AUTHORS

Pranay Kumar Rahi received the Bachelors of Technology degree in Electronics and Telecommunication Engineering from Government Engineering College, Guru Gasidas University, Bilaspur, Chhattisgarh, India in 2004

,working as a Assistant Professor in Electrical and Electronic department of Institute of Technology Korba since 2008 and pursuing Masters of Engineering in Electronics and Communication Engineering from National Institute of Technical Teacher's Training & Research, Punjab University, Chandigarh, India.

Nikhil agrawal persuing Bachelor of Engineering in Electrical and Electronics Engineering in 6th semester from Institute of Technology Korba, Chhattisgarh Swami Vivekananda Technical University, Chhattisgarh, India

G Laxmi Sagar persuing Bachelor of Engineering in Electrical and Electronics Engineering in 6th semester from Institute of Technology Korba, Chhattisgarh Swami Vivekananda Technical University, Chhattisgarh, India

Rahul suryawanshi pursuing bachelor of engineering in electrical and electronics engineering in 6th semester, from Institute of Technology Korba, Chhattisgarh Swami Vivekananda Technical University, Chhattisgarh, India