

A Dual Band Decoupling Network for Two Coupled Antennas in MIMO applications

Jenifer J¹ and Renuka devi²

¹Jenifer J, ECE Department/ KCG College of Technology/Anna University, KCG College of Technology,

Karapakkam, Chennai

¹jeniferupt@gmail.com

²Renuka devi, ECE Department/ KCG College of Technology/Anna University, KCG College of Technology,

Karapakkam, Chennai

²renukadevi@kcgcollege.com

ABSTRACT

The proposed Two Dual band monopole antennas, is composed of two branches, at the center frequencies of the lower and upper bands, 2.45 and 5.25 GHz, respectively. The network between the radiating strips helps to improve the impedance matching and decouple the antennas. The antenna is printed on the top side of a 1.6-mm FR4 substrate (ϵ_r = 4.6) while a ground plane, with a size of 80 × 55 mm, is etched on the bottom side. The antenna was simulated using ADS (Advanced Design System) Software and S-parameters of the proposed dual-band antennas were measured. The antenna, with $|S_{11}| < -10$ dB, covers the whole WLAN bands from 2.33-2.93 GHz and 4.59-5.52 GHz. The simulated and measured scattering parameters at 2.45 and 5.2 GHz had shown an isolation improvement.

Keywords/ Index Term— ADS, Monopole antenna, 2.45 and 5.25 GHz.

1. INTRODUCTION

In this paper a decoupling network was designed to decouple the two coupled antennas. The Coupled Resonator Decoupling network (CRDN) was designed and connected in shunt between the coupled antennas. The network can effectively reduce the couplings between two coupled dual-band antennas in two bands simultaneously. The measured scattering parameters of two coupled antennas with and without the Decoupling network prove that the isolation between the two antennas in both the low and high bands can be improved.

2. TWO DUAL BAND MONOPOLE ANTENNAS WITHOUT DECOUPLING NETWORK

The two identical printed dual-band monopoles are designed as shown in Fig-1 using ADS Software. Transmitting and receiving antennas are placed close to each other on a 1.6-mm-thick FR4 substrate. The separation distance DA = 9.8 mm.

The simulated S parameters for the antennas are shown in Fig-

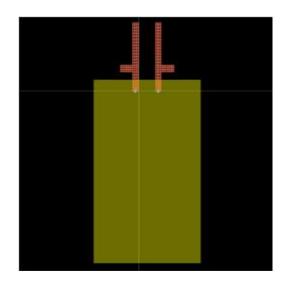
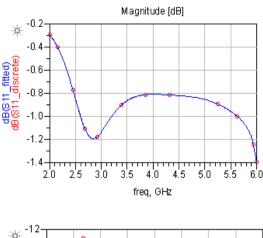



Fig-1: Two Dual-Band Monopole Antennas in ADS.

The return loss of |S11| at 2.45GHz is -0.849 and at 5.25GHz is -0.893, |S21| at 2.45GHz is -13.577 and at 5.25GHz is -22.022. Antenna Parameters are measured for both 2.45 and

5.25 GHz. The value of Power radiated, Effective angle, Directivity, Gain are measured is shown in Fig-3 and Fig-4.

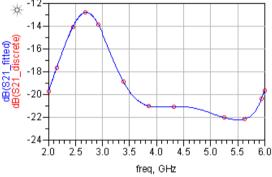


Fig-2: Simulated S parameters of coupled antennas

Mantenna Parameters		?×				
Power radiated (Watts)		0.000128794				
Effective angle (Steradians)		2.7087				
Directivity(dBi)		6.66449				
Gain (dBi)		-3.84083				
Maximim intensity (Watts/Steradian)		4.75483e-05				
Angle of U Max (theta, phi)	0	0				
E(theta) max (mag,phase)	0.185811	-95.7912				
E(phi) max (mag,phase)	0.0360575	84.2173				
E(x) max (mag,phase)	5.96334e-05	-100.872				
E(y) max (mag,phase)	0.189277	84.2091				
E(z) max (mag,phase)	0	0				
ОК						

Fig-3: Antenna Parameters for 2.45GHz

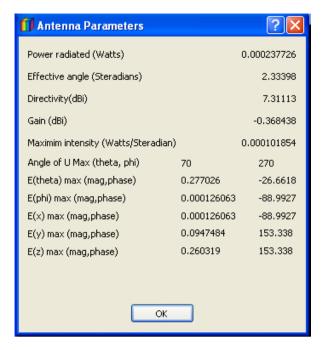


Fig-4: Antenna Parameters for 5.25GHz

3. TWO DUAL BAND MONOPOLE ANTENNA WITH DECOUPLING NETWORK

The same way two dual-band monopole antennas are designed with Decoupling network. The CRDN is designed using ADS Software. The designed two dual-band monopole antennas with decoupling network are shown in Fig-5. The isolation between the antennas should be high for good performance, so the coupling should be minimized. The level of coupling from antenna 1 to antenna 2 depends on the gains of the individual antennas in the particular directions and loss over the total path length, as well as the reflectivity of the surfaces at which the reflection occur. The coupling is conveniently expressed in dB. The simulated S parameters for the antennas with Decoupling network are measured as in Fig-6.

The return loss of |S11| at 2.45GHz is -1.119 and at 5.25GHz is -0.720, |S21| at 2.45GHz is -20.49 and at 5.25GHz is -22.21. Antenna Parameters are measured for both 2.45 and 5.25 GHz. The value of Power radiated, Effective angle, Directivity, Gain are measured is shown in Fig-7 and Fig-8. The simulated scattering parameters of coupled and decoupled antennas are measured using ADS. By comparing it can be seen from Sparameters in the bands of interest, the designed CRDN significantly reduces the mutual couplings of the original

coupled antennas in the two designated frequency bands (2.45 and 5.25 GHz) as compared to those of the original coupled antennas. The simulated and measured scattering parameters of the coupled dual-band antennas are measured using ADS.

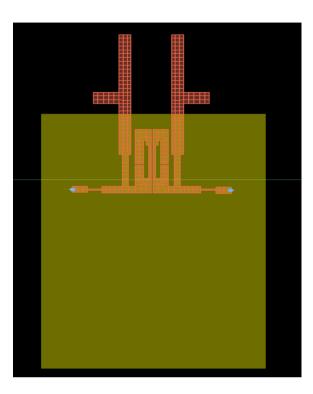


Fig-5: Two Dual Band Monopole Antennas with Decoupling Network in ADS

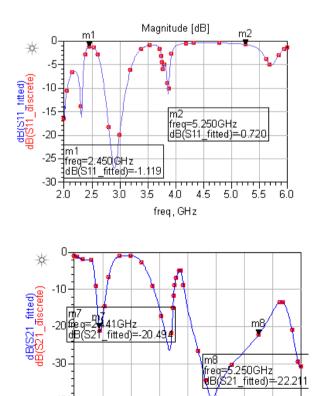


Fig-6: Simulated S parameters of coupled antennas

The resultant value of coupled antennas with and without decoupling network is measured. The results of various parameters are shown in Table-1

🚺 Antenna Parameters		?×
Power radiated (Watts)		0.000104892
Effective angle (Steradians)		3,48636
Directivity(dBi)		5.56838
Gain (dBi)		-6.28177
Maximim intensity (Watts/Steradian)		3.00863e-05
Angle of U Max (theta, phi)	61	90
E(theta) max (mag,phase)	0.150562	-40.6167
E(phi) max (mag,phase)	0.000129831	-123.027
E(x) max (mag,phase)	0.000129831	56.9733
E(y) max (mag,phase)	0.0729938	-40.6167
E(z) max (mag,phase)	0.131684	139.383
ОК		

Fig-7: Antenna Parameters for 2.45GHz

Antenna Parameters		? ×
Power radiated (Watts)		0.00837478
Effective angle (Steradians)		3.91712
Directivity(dBi)		5.06243
Gain (dBi)		2.27751
Maximim intensity (Watts/Steradian)		0.00213799
Angle of U Max (theta, phi)	74	94
E(theta) max (mag,phase)	1.26915	-39,1909
E(phi) max (mag,phase)	0.0119819	26.3643
E(x) max (mag,phase)	0.0313011	161.152
E(y) max (mag,phase)	0.348629	-39.316
E(z) max (mag,phase)	1.21999	140.809
ОК		

2.5

3.0

3.5

4.0

freq, GHz

4.5

5.0

5.5

Fig-8: Antenna Parameters for 5.25GHz

Professor, Department of Electronics and Communication Engineering, K.C.G College of Technology for giving me a valuable suggestions and guidance which really helped me to complete the first phase of my project. I would like to thank the developing and maintaining team of the IJREST.

TABLE-I

Table-1: Result values of antennas with and without decoupling

	Without	Without	With	With
	Decoupli	Decoupling	Decoupling	Decoupling
	ng			
	At 2.45	At 5.25	At 2.45	At 5.25
	GHz	GHz	GHz	GHz
Gain	-3.840	-0.368	-6.2812	2.2757
Directivity	6.664	7.311	5.5683	5.0624
Efficiency	8.902	17.062	5.9	35.2
Power radiated	0.000128	0.00023	0.000104	0.00837
Return loss				
$ S_{11} $	-0.849	-0.893	-1.119	-0.720
S ₁₂	-13.577	-22.022	-21.202	-22.211
$ S_{21} $	-13.605	-22.007	-20.49	-22.211
S ₂₂	-0.857	-0.900	-1.122	-0.785

4. CONCLUSION

A Dual-Band Decoupling network is proposed in this project. This Decoupling network reduces the coupling between the antennas effectively and increases the isolation. By comparing the results the Decoupling network effectively reduces the coupling between the antennas. The values of Gain, Directivity, Efficiency, Power radiated, Return loss are shown in Table. I. Good results are achieved with Decoupling network at 5.25 GHz.

5. ACKNOWLEDGMENT

First and foremost, I thank **God Almighty** for given me the physical and mental strength to complete this paper. I would like to thank to my Guide **Mrs. Renuka devi, M.E.,** Assistant

6. REFERENCES

- [1] XueMing Ling and RongLin Li, Senior Member, IEEE, "A Novel Dual-Band Antenna ArrayWith Low Mutual Coupling for Portable Wireless Devices," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 2011.
- [2] Luyu Zhao, Member, IEEE, Lap K. Yeung, Member, IEEE, and Ke-LiWu, Fellow, IEEE, "A Coupled Resonator Decoupling Network for Two-Element Compact Antenna Arrays in Mobile Terminals," IEEE Transactions on Antennas and Propagation, VOL. 62, NO. 5, MAY 2014.
- [3] Mohammad S. Sharawi, Senior Member, IEEE, Ahmed B. Numan, Muhammad U. Khan, and Daniel N. Aloi, Senior Member, IEEE, "A Dual-Element Dual-Band MIMO Antenna System With Enhanced Isolation for Mobile Terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 2012.
- [4] Yuan Ding, Zhengwei Du, Ke Gong, Member, IEEE, and Zhenghe Feng, Associate Member, IEEE, "A Novel Dual-Band Printed Diversity Antenna for Mobile Terminals," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, JULY 2007.
- [5] Mehrbod Mohajer, Safieddin Safavi-Naeini, and Sujeet K. Chaudhuri, "Spherical Vector Wave Approach for MIMO Antenna Decoupling," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 2013.
- [6] Ashkan Boldaji, Graduate Student Member, IEEE, and Marco A. Antoniades, Member, IEEE, "Method of Decoupling and Independently Tuning the Second Mode of a Microstrip-Fed Slot Antenna Using Series Inductive Loading," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 2013.
- [7] Kai-Chi Lin, Cheng-Hsun Wu, Student Member, IEEE, Chi-Hui Lai, Student Member, IEEE, and Tzyh-Ghuang Ma, Senior Member, IEEE, "Novel Dual-Band Decoupling Network for Two-Element Closely Spaced Array Using Synthesized Microstrip Lines," IEEE Transactions on Antennas and Propagation, Vol. 60, NO. 11, Nov 2012.

- [8] Xinyi Tang, Member, IEEE, Koen Mouthaan, Member, IEEE, and Jacob C. Coetzee, Member, IEEE, "Tunable Decoupling and Matching Network for Diversity Enhancement of Closely Spaced Antennas," IEEE Antennas and Wireless Propagation Letters, VOL. 11, 2012.
- [9] Shin-Chang Chen, Yu-Shin Wang, and Shyh-Jong Chung, Senior Member, IEEE, "A Decoupling Technique for Increasing the Port Isolation Between Two Strongly Coupled Antennas," IEEE Transactions on Antennas and Propagation, Vol.56, No. 12, December 2008.
- [10] Zhi Ning Chen, Fellow, IEEE, Xue Ni Low, and Terence S. P. See, Member, IEEE, "Analysis and Optimization of Compact Suspended Plate MIMO Antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, January 2011.