

LIE Ideals and Generalized Derivations on Prime Rings

Mushtaque Hussain Borbora

Assistant Professor, Applied Sciences and Humanities Section, University Polytechnic, Aligarh Muslim University, Aligarh-202002, India mborbora@yahoo.co.in

ABSTRACT

Let R be an associative ring. An additive mapping $F: R \rightarrow R$ is called generalized derivations if there exists a derivation $d: R \rightarrow R$ such that F(xy) = F(x)y + xd(y) for all $x, y \in R$. The objective of the present paper is to extend the results for nonzero Lie ideal of a prime ring R.

Mathematics Subject Classification (2010): 16W25, 16N60, 16U80, 46J45.

Keywords - Semiprime Ring, Banach Algebra, Derivation.

1. INTRODUCTION

Throughout the discussion, unless otherwise mentioned, R will denote an associative ring having at least two elements with center Z(R). However, R may not have unity. For any $x,y \in R$, the symbol [x,y] (resp. $(x \circ y)$) will denote the commutator xy - yx. For any $x; y \in R$; the symbol [x; y] will denote the commutator xy-yx. The least positive integer n such that nx = 0 for all $x \in R$ is called the characteristic of the ring R and generally expressed as char (R). If no such positive integer exists, then R is said to have characteristic R. Obviously, if R charR is an R if R is an R is said to be a Lie ideal of R if R i

An additive mapping $d: R \rightarrow R$ is said to be a derivation of R if d(xy) = d(x)y + xd(y) for all $x, y \in R$. A derivation d is said to be inner if there exists $a \in R$ such that d(x) = ax - xa for all $x \in R$: Following Brešar[3], an additive mapping $F: R \rightarrow R$ is said to be the generalized derivation of R with associated derivation d if F(xy) = F(x)y + xd(y) for all $x; y \in R$. It is clear that the concept of generalized derivation covers both the concept of derivation and the concept of left multiplier (i.e., an additive mapping $T: R \rightarrow R$ satisfying T(xy) = T(x)y for all $x; y \in R$). Clearly, every generalized

derivation is a derivation but the converse is not true in general. Very recently, Ali et al. [1] established that a semiprime ring R with a non-zero ideal I must be commutative if it admits a generalized derivation F satisfying the properties $F(x)F(y) \pm xy \in Z(R)$ and $F(x)F(y) \pm yx \in Z(R)$ for all $x, y \in I$. In this line of investigation, we study the above mentioned identities in the setting of square closed Lie ideal of a prime ring.

2. PRELIMINARIES RESULTS

Before stating our main result, let us list some basic facts, which we will be used in the following:

Lemma 2.1. [2, Lemma 4] Let R be a prime ring with characteristic not two, $a, b \in R$. If U a non central Lie ideal of R and aUb = (0), then a = 0 or b = 0.

Lemma 2.2. [4, Theorem 7] Let R be a prime ring with characteristic not two and U be a nonzero Lie ideal of R. If d is a nonzero derivation of R such that $[u, d(u)] \in Z(R)$, then $U \subsetneq Z(R)$.

3. MAIN RESULTS

Theorem 3.1. Let R be a prime ring such that $char(R) \neq 2$ and U be a Lie ideal of R such that $u^2 \in U$, for all $u \in U$. If there exists an additive mapping $F: R \rightarrow R$ associated with a

derivation d of R such that F(xy) = F(x)y + xd(y) for all $x, y \in R$. If $F(u)F(v) \pm uv \in Z(R)$ for all $u, v \in U$. Then $U \subsetneq Z(R)$.

Proof. First we consider the case

(3.1)
$$F(u)F(v) - uv \in Z(R) \text{ for all } u, v \in U:$$

Replacing v with 2vw, $w \in U$, we have

(3.2)
$$2(F(u)F(vw) - u(vw)) \in Z(R)$$

which gives

(3.3)
$$2(F(u)(F(v)w + vd(w)) - uvw) \in Z(R)$$
 for all $u, v, w \in U$:

This can be further written as

(3.4)
$$2([F(u)(F(v)w + vd(w)) - uvw, w]) = 0 \text{ for all } u;$$

 $v, w \in U$:

Since char(R) $\neq 2$, we get

$$[F(u)(F(v)w + vd(w)) - uvw, w] = 0 \text{ for all } u, v,$$

$$w \in U.$$

Application of (3.1) yields that

(3.6)
$$[F(u)vd(w),w] = 0 \text{ for all } u, v, w \in U.$$

Putting v = wv in above relation and using the fact that char(R) $\neq 2$, we obtain

$$[F(u)wvd(w), w] = 0 \text{ for all } u; v, w \in U.$$

Now putting u = 2uw in (3:6) and using the fact that $char(R) \neq 2$, we get

$$[F(u)wvd(w), w] + [ud(w)vd(w), w] = 0 \text{ for all } u;$$

$$v, w \in U.$$

In view of (3:7), above relation reduces to

(3.9)
$$[ud(w)vd(w), w] = 0 \text{ for all } u; v. w \in U.$$

Substituting 2d(w)u for u in (3:9) and using it, we obtain

(3.10)
$$2([d(w), w]ud(w)vd(w)) = 0 \text{ for all } u, v, w \in U.$$

Since $char(R) \neq 2$, we get

(3.11)
$$[d(w), w]ud(w)vd(w) = 0$$
 for all $u, v, w \in U$.

This implies [d(w), w]u[d(w), w]v[d(w), w] = 0 that is, [d(w), w]u[d(w), w]u[d(w), w] = (0) for all $w \in U$. Application of Lemma 2.1 yields that

(3.12)
$$[d(w), w] = 0$$
 for all $w \in U$.

In view of Lemma 2.2, $U \subseteq Z(R)$.

By the same argument, we obtain the same conclusion in case $F(u)F(v) + uv \in Z(R)$ for all $u, v \in U$. This completes the proof of theorem.

Theorem 3.2. Let R be a prime ring such that $\operatorname{char}(R) \neq 2$ and U be a Lie ideal of R such that $u^2 \in U$, for all $u \in U$. If there exists an additive mapping

 $F: R \to R$ associated with a derivation d of R such that $F(xy) = F(x)y + xd(y) \text{ for all } x, y \in R.$

If $F(u)F(v) \pm vu \in Z(R)$ for all $u, v \in U$. Then $U \subseteq Z(R)$.

Proof. We begin with the situation

$$(3.13) F(u)F(v) - vu \in Z(R) \text{ for all } u, v \in U.$$

Replacing v by 2vw, we get

$$(3.14) 2(F(u)(F(v)w + vd(w)) - vwu) \in Z(R) \text{ for all } u, v, w \in U.$$

This implies that

(3.15)
$$2((F(u)F(v) - vu)w + v[u, w] + F(u)vd(w)) \in Z(R)$$
 for all $u, v, w \in U$.

Application of (3:13) yields that

(3.16)
$$2([v[u, w], w] + [F(u)vd(w);w]) = 0$$
 for all $u, v, w \in U$.

Since $char(R) \neq 2$, we get

(3.17)
$$[v[u, w], w] + [F(u)vd(w), w] = 0 for all u,$$
 $v, w \in U.$

Substituting 2uw for u in (3:16) and using the fact that $char(R) \neq 2$, we obtain

(3.18)
$$v[u, w], w]w + [(F(u)w + ud(w))vd(w), w] = 0 \text{ for }$$
 all $u, v, w \in .$

Putting v = wv in (3:16) and using the fact that char(R) $\neq 2$, we get

$$(3.19) w[v[u,w], w] + [F(u)wvd(w),w] = 0 \text{for}$$
 all $u, v, w \in U$.

Subtracting (3:19) from (3:18), we have

(3.20)
$$[[v[u, w], w], w] + [ud(w)vd(w), w] = 0$$
 for all $u, v, w \in U$.

Replacing u by uw in (3:20), we obtain

$$[[v[u, w], w], w]w + [uwd(w)vd(w), w] = 0 \text{ for all } u, v, w \in U.$$

Right multiplying (3:20) by w and then subtracting from (3:21), we get

$$[u[d(w)vd(w), w]; w] = 0 \text{ for all } u, v, w \in U.$$

Now, we substitute d(w)vd(w)u for u in (3:22) and get

$$0 = [d(w)vd(w)u[d(w)vd(w), w],w]$$

(3.23)
$$= d(w)vd(w)[u[d(w)vd(w), w], w] + [d(w)vd(w), w]u[d(w)vd(w), w]:$$

By using (3:22), it reduces to

$$[d(w)vd(w),\,w]u[d(w)vd(w),\,w]=0 \text{ for }$$
 all $u,\,v,\,w\in U.$

Since *U* is a Lie ideal, it follows that

$$[d(w)vd(w),w]u[d(w)vd(w), w] = (0)$$
 for

all $v, w \in U$. Application of Lemma 2.1 yields that

(3.25)
$$[d(w)vd(w), w] = 0 \text{ for all } v, w \in U.$$

That is,

 $(3.26) d(w)vd(w)w - wd(w)vd(w) = 0 ext{ for all } v, w \in U.$

Now we put v = 4vd(w)t and using the fact that char(R) $\neq 2$, we obtain

$$(3.27) d(w)vd(w)td(w)w - wd(w)vd(w)td(w) = 0 for$$
 all $t, v, w \in U$.

By (3:26), this can be written as

(3.28)
$$d(w)vwd(w)td(w) - d(w)vd(w)wtd(w) = 0 \text{ for all } t, v, w \in U.$$

That is,

(3.29)
$$d(w)v[d(w), w]td(w) = 0$$
 for all $t, v, w \in U$.

This implies [d(w), w]v[d(w), w]t[d(w), w] = 0 for all $t, v, w \in U$. Therefore, [d(w), w]

U[d(w), w]U[d(w), w] = (0) for all $w \in U$. Since R is prime, again by Lemma 2.1, we find that [d(w), w] = 0 for all $w \in U$. In view of Lemma 2.2, we conclude that $U \subseteq Z(R)$.

In the same manner the conclusion can be obtained in case $F(u)F(v) + vu \in Z(R)$ for all $u, v \in U$. Hence, the theorem is now proved.

REFERENCES

- [1] Ali, Shakir, Dhara, B. and Khan, M. S., On prime and semiprime rings with additive mappings and derivations, Univ. J. Com. Math. 2 (2014), 48-55.
- [2] Bergen, I., Herstein, I. N. and Kerr, J. W., Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), 259-267.
- [3] Brešar, M., On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89-93
- [4] Lee, P. H. and Lee, T. K., Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica 11 (1983), 75-80.