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ABSTRACT

The present paper is aimed at studying the effect of rotation on the general model of the equations of generalized thermoelasticity

for a homogeneous isotropic elastic half-space solid. The problem is in the context of Lord-Shulman's (L-S) theory of generalized

thermoelasticity as well as the classical dynamical coupled theory (CD). The normal mode analysis is used to obtain the exact

expressions for the temperature, displacement components and the stresses distribution. The variations of the considered field

variables through the horizontal distance are illustrated graphically and analyzed. Comparisons are made with the results in the

presence and absence of rotation

1. INTRODUCTION

The coupled theory of thermoelasticity has been extended by
including the thermal relaxation time in the constitutive
equations by Lord and Shulman [1] and Green and Lindsay
[2]. These theories eliminate the paradox of infinite velocity of
heat propagation and are termed generalized theories of
thermo-elasticity. Othman and Lotfy [3] studied two-
dimensional problem of generalized magneto-thermoelasticity
under the effect of temperature dependent properties. Othman
and Lotfy [4] studied transient disturbance in a half-space
under generalized magneto-thermoelasticity with moving
internal heat source. Othman and Lotfy [5] studied the plane
waves in generalized thermo-microstretch elastic half-space by
using a general model of the equations of generalized thermo-
microstretch for a homogeneous isotropic elastic half space.
Othman and Lotfy [6] studied the generalized thermo-
microstretch elastic medium  with temperature dependent
properties for different theories. Othman and Lotfy [7] studied
the effect of magnetic field and inclined load in micropolar
thermoelastic medium possessing cubic symmetry under three
theories. The normal mode analysis was used to obtain the
exact expression for the temperature distribution, thermal

stresses, and the displacement components.

Agarwal [8, 9] studied respectively thermo-elastic and

magneto- thermo-elastic plane wave propagation in an infinite
non-rotating medium. Some problems in thermo- elastic
rotating media are due to Schoenberg and Censor [10], Puri [
11], Roy Choudhuri and Debnath [12,13] and Othman [14,
15]. Othman [16, 17] studied the effect of rotation in a
and  thermo-
The

propagation of plane harmonic waves in a rotating elastic

micropolar  generalized  thermoelastic

viscoelasticity half space under different theories.

medium without thermal field has been studied. It was shown
there that the rotation causes the elastic medium to be
dispersive and an isotropic. These problems are based on more
realistic elastic model since earth, moon and other planets have

angular velocity

The present paper is aimed at studying the effect of rotation on

the general model of the -equations of generalized
thermoelasticity for a homogeneous isotropic elastic half-space
solid. The problem is in the context of Lord-Shulman's (L-S)
theory of generalized thermoelasticity as well as the classical
dynamical coupled theory (CD). The normal mode analysis is
used to obtain the exact expressions for the temperature,
displacement components and the stresses distribution. The
variations of the considered field variables through the
horizontal distance are illustrated graphically and analyzed.
Comparisons are made with the results in the presence and

absence of rotation. A comparison is carried out between the
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temperature, stresses and displacements as calculated from the
generalized thermoelasticity (L-S) and (CD) theories for the
propagation of waves in semi-infinite microstretch elastic

solids.

2. FORMULATION OF THE PROBLEM

Following Lord and Shulman [1], the constitutive equations
and field equations for a linear isotropic generalized thermo-

elastic solid in the absence of body forces are obtained, we
consider rectangular coordinate system (X, Y, Z) having origin
on the surface Y =0 and z-axis pointing vertically into the
medium. The thermoelastic body is rotating uniformly with an

angular velocity Q=Qn, where N is a unit vector

representing the direction of the axis of rotation. The basic
governing equations of linear generalized thermoelasticity

with rotation in absence of body forces and heat sources are

(A+p)V(V.0) +u Vi —yVT=pli+ Q x (Qx1)+2Q xu] ,

)

0 . 0.
kV2T=pCE (n1+T0 E)T_‘_’YTO (Ill-‘rnoToa)e (2)

O = Z,Ueij +[/1uk,k _7/(T _TO)]é}j'

@)

The state of plane strain parallel to the XZ -plane is defined by
uz =w(x,zt), Q=(0,Q,0).

up=u(xzt) , u,=0,

The field equations (1)-(3) reduce to

(1) (U + Wi ) V2 =y T,y = p[ii— Q%u+20W], (4)

(4 1) (Uyyg +W, 50 ) +1V2W —yT,, = p[W - Q%W —2Qu], (5)

v

v
x

Geometry of the problem
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kV2T =pCg (n; +1 E)T'*‘YTO (ng+ngtg E)e, (€)

, 8% &
where y=(3A2p+tk)a; and  V ==t
ox° oz

Equations (3)-(6) are the field equations of the generalized

thermo- elastic solid, applicable to the L-S theory
(ng=ny=1, 1>0), and the CD theory
(n0:O, nl:l, TOZO).

For convenience, the following non-dimensional variables are
used:

* *

il = Xj, _i = m Ui, TZ(D*t, ?02 CO*To, VOZ OJ*Vo,
C2 YTo

- TT, _ ©j x pCecz = O

T= O’Gu S PLEC2 Q=—, a=Lt
To YTo k 0 p

Using the (7), Egs. (4)-(6) become (dropping the dashed for
convenience)

A+
u—92u+2QW=Lv2u+( Zu)e,x—T,x. ®)
pco pco
A+
w—sz—29U:Lv2w+(—;)e,z—T,z, )
pco pC2
) o 7Ty d ..
\Y T—(n1+t0—)T=—*(n1+n0’c0 —)e . (10)

Assuming the scalar potential functions o(x,z,t) and wy(x,z,t)
defined by the relations in the non-dimensional form:

%9 Ov.
ox 0z
(11)

Using (11) in Egs. (8)-(10), we obtain.

_9¢ dvy
0z ox’

e:VZ(p.

2
Vz —aoa—2+ 3092:|(p—aoT+29a0\i/= 0
ot
(12)
2P 2 :
\Y —a1¥+alQ w—ZQal(p:O

(13)

I o & 0 2 .,
V2o (n—+19—) [T —=¢ (n{ — + Nty —) Ve, (14
(n = Toatz)} e(m— oToatZ) o (14)

2 2
c T
where clz— +2M,a0——§,al—&, g=2 *0
C1 B pow K
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3. NORMAL MODE ANALYSIS

The solution of the considered physical variables can be
decomposed in terms of normal mode as the following form:

[0.v.6,. I, 2 =[ 5(x), (), 5, (). T exp(ot +iaz)
(15)

where @(x) etc. are the amplitude of the function ¢(x), ® is
a complex time constant and a is the wave number in the z-
direction.

Using Eq. (15), then Egs. (12) — (14) become respectively

(D®—A)g-agT+ag Ay =0,
(16)

(D? —Ag)y—ag Ay =0,
(7)

(D% -A,)T-As(D? -a2)5=0,
(18)

WhereD=i A =a% +ay(0? —0?),
dx
A2 =ZQ(D,A3 =a2 +a1((02 _QZ),
A4 =a2 +® (n1+T00)),A5 =Em (n1+n0T00)) .

Eliminating g,y , T between Eqgs. (16)-(18), we get the
following sixth order ordinary differential equation satisfied
by ¢.v, T

[ D°-p,D" +B,D? -B3 | {500,700, TG0} 0. (19)

Equation (19) can be factorized as
(D? —kf) (D? =k5)(D* —K3) {(x), 5(x), T()} =0.  (20)

where

Br=A1+A+A3 +2pAs,

B =[A1A3+AIA +AGA, +agaAS +agAs(a” +Ag)
Ba = —(ArAAz +20a1A5A, +29aAgAs) .

The solution of Eq. (19), has the form

3
-k
o= E Mp(a) e nx’
=1

(21)
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\T/:ZM}](&,(D) e n* ,
n=1
(22)

= 3 -k _x

T=ZM"n awye N,
n=1

(23)

where M, (a,0), M}, (a,0), and M}, (a, ®) are some parameters

depending on a, ® and k% (n=1,2,3) are the roots of the
characteristic equation of Eqg. (20).

Using Egs. (21)-(23) into Egs. (12) and (13) we get the
following relations

v= Zgjgnwa,m) e knx, (24)
3—1
T=>"hMp@o) e k%, (25)
where,_1
(<2 —a?) A (ke

On = )
[kﬁ ~(a? +A3)kﬂ kG - A,

Using Egs. (21), (24) and (25) in the Eq. (10) and the non-

dimensional form of Eq. (3), we obtain the expressions of

displacement and stress components as follows:

3
u=Y (iag, —k,)M,@w) e “*, (26)
n=1
3
W= (ia-g,k, M, (@,0) e ©7)
n=1
5
G,y = D 8, Mp (a,0) e K%, (28)
n=1
> k
Oy = ZgnMn(a’(’)) e X, (29)
n=1
where

8, =iaf (ia—g,k,)—f.k,(iag, —k,)—h,,

o . A+2u0
gn = |af3(|agn —kn)—knf4(|a_gnkn) ’fl 272 !
PC2
A 1l H
f2:72,f3:721 f4:72'
pCy pC2 PCz
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4. APPLICATION
The plane boundary subjects to an instantaneous normal point
force and the boundary surface is isothermal, the boundary

conditions x=0 are:

T0,z,t)=0, o,, =—p,,
(30)

Applying the boundary conditions (30) at the surface X =0

of the medium, we obtain a system of three equations in the
unknowns M, (n=1,2,3). After applying the inverse of

matrix method, we the solutions as:

M,
M, |=] 6 (1)
M

S & g) \ 0

5. NUMERICAL RESULTS

In order to illustrate our theoretical results obtained in
preceding section and to compare these in the context of
various theories of thermoelasticity, we now present some
numerical results. In the calculation process, we take the case
of magnesium crystal [18] as material subjected to mechanical

and thermal disturbances. Since, ® is the complex constant,

then we taken® =, +1{. The other constants of the

problem are taken as w, =—2,{ =1, 19 =0.02 and the

physical constants used are:

p=174gm/ cmg,x =9.4x 1011
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the relaxation time is including in the heat equation are
distinctly different from those when the relaxation time is not
mentioned in heat equation, because the thermal waves in the
Fourier's theory of heat equation travel with an infinite speed
of propagation as opposed to finite speed in the non-Fourier
case. This demonstrates clearly the difference between the

coupled and the generalized theories of thermoelasticity.

6. CONCLUSIONS

e The curves in the context of the CD and LS theories
decrease exponentially with increasing X, this indicates
that the thermoelastic waves are un-attenuated and non-
dispersive, where purely thermoelastic waves undergo
both attenuation and dispersion.

e The curves of the physical quantities with LS model in
most of figures are lower in comparison with those under

CD model.
(29)
e Analytical solutions based upon normal mode analysis
for themoelastic problem in solids have been developed

and utilized.

e It can be concluded that a change of volume is attended
by a change of the temperature while the effect of the
deformation upon the temperature distribution is the

subject of the theory of thermoelasticity.

e The value of all the physical quantities converges to zero

with an increase in distance x and all functions are

continuous.

dyne/cmz, n= 4_()X1()11 dyne/cnfz, Tél'l;ezglﬂe_spnce of rotation plays a significant role in all

k = 0.6x10 2 cal / cm sec °C, y= 0.779x10 ™% dyne, Cg =0.23 Ca”gn%hect.)hysmal quantities.

The variation of the temperature distribution T, components of

displacement u and W, normal stress o,, and tangential

zz
stress o, with distance x at the plane Z =1 and p, =2 for

CD and LS theories have been shown by solid and dashed
lines respectively for generalized thermoelasticity medium
with rotation (Q = 0.2) and without rotation (2 =0.0). These
distributions are shown graphically in Figs. 1-5 for thermal
sources for timet=0.1. We notice that the results for the

temperature, the displacement and stress distributions when

1 . . . . . . .
0.8
0.6
0.4 /

0.2

-0.2

0.4 r r r r r r r
0 1 2 3 4 5 6 7 8

Fig 1- Temperature distribution at different rotation
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Fig—2: Normal displacement distribution at different rotation
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Fig—3: Horizontal displacemént distribution at different

rotation

zz

Fig—4: Normal stress distribution at different rotation
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Fig—>5: Tangential stress distribution at different rotation
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