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ABSTRACT 

 The present paper is aimed at studying the effect of rotation on the general model of the equations of generalized thermoelasticity 

for a homogeneous isotropic elastic half-space solid. The problem is in the context of Lord-Şhulman's (L-S) theory  of generalized 

thermoelasticity as well as the classical dynamical coupled theory (CD). The normal mode analysis is used to obtain the exact 

expressions for the temperature, displacement components and the stresses distribution. The variations of the considered field 

variables through the horizontal distance are illustrated graphically and analyzed. Comparisons are made with the results in the 

presence and absence of rotation 

 

1. INTRODUCTION 

The coupled theory of thermoelasticity has been extended by 

including the thermal relaxation time in the constitutive 

equations by Lord and Shulman [1] and Green and Lindsay 

[2]. These theories eliminate the paradox of infinite velocity of 

heat propagation and are termed generalized theories of 

thermo-elasticity. Othman and Lotfy [3]  studied two-

dimensional problem of generalized magneto-thermoelasticity   

under the effect of temperature dependent properties. Othman 

and Lotfy [4] studied transient disturbance in a half-space 

under generalized magneto-thermoelasticity with moving 

internal heat source. Othman and Lotfy [5] studied the plane 

waves in generalized thermo-microstretch elastic half-space by 

using a general model of the equations of generalized thermo-

microstretch for a homogeneous isotropic elastic half space.  

Othman and Lotfy [6] studied the generalized  thermo-

microstretch elastic medium  with temperature dependent 

properties for different theories. Othman and Lotfy [7] studied 

the effect of magnetic field and inclined load in micropolar 

thermoelastic medium possessing cubic symmetry under three 

theories. The normal mode analysis was used to obtain the 

exact expression for the temperature distribution, thermal 

stresses, and the displacement components.  

Agarwal [8, 9] studied respectively thermo-elastic and 

magneto- thermo-elastic plane wave propagation in an infinite 

non-rotating medium. Some problems in thermo- elastic 

rotating media are due to Schoenberg and Censor [10], Puri [ 

11], Roy Choudhuri and Debnath [12,13] and Othman [14, 

15]. Othman [16, 17] studied the effect of rotation in a 

micropolar generalized thermoelastic and thermo-

viscoelasticity half space under different theories. The 

propagation of plane harmonic waves in a rotating elastic 

medium without thermal field has been studied. It was shown 

there that the rotation causes the elastic medium to be 

dispersive and an isotropic. These problems are based on more 

realistic elastic model since earth, moon and other planets have 

angular velocity 

The present paper is aimed at studying the effect of rotation on 

the general model of the equations of generalized 

thermoelasticity for a homogeneous isotropic elastic half-space 

solid. The problem is in the context of Lord-Şhulman's (L-S) 

theory  of generalized thermoelasticity as well as the classical 

dynamical coupled theory (CD). The normal mode analysis is 

used to obtain the exact expressions for the temperature, 

displacement components and the stresses distribution. The 

variations of the considered field variables through the 

horizontal distance are illustrated graphically and analyzed. 

Comparisons are made with the results in the presence and 

absence of rotation. A comparison is carried out between the 
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temperature, stresses and displacements as calculated from the 

generalized thermoelasticity (L-S) and (CD) theories for the 

propagation of waves in semi-infinite microstretch elastic 

solids. 

 

2. FORMULATION OF THE PROBLEM  

Following Lord and Şhulman [1], the constitutive equations 

and field equations for a linear isotropic generalized thermo- 

elastic solid in the absence of body forces are obtained, we 

consider rectangular coordinate system (x, y, z) having origin 

on the surface y 0  and z-axis pointing vertically into the 

medium. The thermoelastic body is rotating uniformly with an 

angular velocity  n , where n  is a unit vector 

representing the direction of the axis of rotation. The basic 

governing equations of linear generalized thermoelasticity 

with rotation in absence of body forces and heat sources are 

2( λ μ ) ( .u) μ u T= ρ[ u ( u) 2 u ]               ,  

                                                                                                         

(1)                                 

2
E 1 0 0 1 0 0

. .
k T ρC (n τ )T T (n n τ )e

t t

 
     

 
             (2) 

 , 02 [ ] ,ij ij k k ije u T T                                                    

(3) 

The state of plane strain parallel to the xz -plane is defined by  

1u =u (x,z,t)   ,   2u 0 ,     3u w(x,z,t) , ,0)(0,Ω  .   

The field equations (1)-(3)   reduce to                                                                                                       

2 2
xx xz x( ) (u, w, ) u T, [ u u 2 w ],            (4)                                                                                                        

2 2
xz zz z( ) (u, w, ) w T, [ w w 2 u ],           (5)               

                                     

 

 

 

 

 

 

Geometry of the problem 

   2
E 1 0 0 1 0 0k T ρC (n τ )T T (n n τ )e,

t t

 
     

 
           (6) 

where t=(3λ+2μ+k)α  and     

2 2
2

2 2
.

x z

 
  

 
 

Equations (3)-(6) are the field equations of the generalized 

thermo- elastic solid, applicable to the L-S theory 

( 0 1 0n n 1, τ 0   ), and the CD theory 

( 0 1 0n 0, n 1, τ 0   ). 

For convenience, the following non-dimensional variables are 

used: 

2
i i i i 0 0 0 0

2 0

** ρc ωω * * *x x , u u , t ω t , τ ω τ , ν ω ν ,
c T

    


  

2
ij 20 E 2

ij 2
0 0

σT-T ρC c μ*T , σ , ω , , c .
*T T k ρω


     


   (7)        

  

Using the (7), Eqs. (4)-(6) become (dropping the dashed for 

convenience) 

 2 2
x x2 2

2 2

u u 2 w u e, T,
ρc ρc

 
       ,                     (8) 

 2 2
z z2 2

2 2

w w 2 u w e, T, ,
ρc ρc

 
                          (9) 

2
2 0

1 0 1 0 0*

T
T (n τ )T (n n )e .

t tk

 
     

  
                  (10) 

Assuming the scalar potential functions (x,z, t)  and (x,z,t)  

defined by the relations in the non-dimensional form: 

ψ
u

x z

 
 
 

,
ψ

w
z x

 
 
 

,
2e    .                               

(11) 

Using (11) in Eqs. (8)-(10), we obtain. 

2
2 2

0 0 0 02
a a a T 2 a 0

t

 
        

  

                        

(12) 

2
2 2

1 1 12
a a ψ 2 a 0

t

 
        

  

                                     

(13) 

2 2
2 2

1 0 1 0 02 2
(n ) T ( n n ) ,

t tt t

    
          

    

 (14) 

where 2
1

2
c

  



, 

2
2

0 2
1

c
a

c
  , 

2
2

1

ρc
a 


,  

2
0T

ε .
*k





  

 

o 
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3. NORMAL MODE ANALYSIS 

The solution of the considered physical variables can be 

decomposed in terms of normal mode as the following form: 

ij ij[ ,ψ,σ ,T](x,z, t) [ (x),ψ(x),σ (x),T(x)]exp(ω t i az)   , 

                                                                                       (15)                                     

where (x) etc. are the amplitude of the function (x) , ω  is 

a complex time constant and a  is the wave number in the z-

direction. 

Using Eq. (15), then Eqs. (12) – (14) become respectively  

2
1 0 0 2( D A ) a T a A 0     ,                                              

(16) 

2
3 1 2( D A ) a A 0     ,                                                          

(17) 

2 2 2
4 5(D A )T A (D a ) 0     ,                                              

(18) 

where
d

D
dx

 ,
2 2 2

1 0A a a ( )    , 

2A 2  ,
2 2 2

3 1A a a ( )    , 

 2
4 1 0A a n    ,  5 1 0 0A n n     .                                                                                                                            

Eliminating ,ψ , T  between Eqs. (16)-(18), we get the 

following sixth order ordinary differential equation satisfied 

by ,ψ , T  

 6 4 2
1 2 3D D D (x), (x),T(x) 0      

 
.          (19) 

 

Equation (19) can be factorized as 

 2 2 2 2 2 2
1 2 3( D k ) ( D k )( D k ) (x), (x),T(x) 0.                (20)                                 

where 

1 1 2 3 0 5A +A +A a A   ,                                 

2 2
2 1 3 1 4 3 4 0 1 2 0 5 3[A A +A A +A A +a a A a A (a A )                           

2 2
3 1 2 3 0 1 2 4 0 3 5(A A A a a A A a a A A )     .                                       

  The solution of Eq. (19), has the form  

3

n 1

k x
n

nM (a,ω)  e




  ,                                                          

(21) 

3

1

k x
n

n

n

M (a,ω)  e




  ,                                                          

(22) 

3
k x

n

1

n

n

T M" (a,ω)  e




 ,                                                         

(23) 

where nM (a,ω) , nM (a, )  , and nM (a, )   are some parameters 

depending on ω  a,  and 2
nk ( n 1,2,3)  are the roots of the 

characteristic equation of  Eq. (20). 

 

Using Eqs. (21)-(23) into Eqs. (12) and (13) we get the 

following relations 

3

n
k xn

n

n 1

g M (a,ω)  e




  ,                                                 (24) 

3

n
k xn

n

n 1

T h M (a,ω)  e




 ,                                                 (25) 

where,  

2

n 2
3

2
n

4 2
n n

(k a )
g

k (a A )k



  
 

,  
 2

5

n 2
n 4

2
nA k a

h
k A





. 

 

 Using Eqs. (21), (24) and (25) in the Eq.  (10) and the non-

dimensional form of Eq. (3), we obtain the expressions of 

displacement and stress components as follows:  

n

3
k x

n n n

n 1

Mu (i a g k ) (a,ω)  e



  ,                            (26) 

n

3
k x

n n n

n 1

Mw (ia g k ) (a,ω)  e



  ,                            (27)        

n

5
k x

zz n n

n 1

M (a,ω)  e



   ,                                          (28) 

n

5
k x

xz n n

n 1

M (a,ω)  e



   ,                                         (29) 

         

where 

n 1 n n 2 n n n ni af (i a g k ) f k (i a g k ) h      ,    

n 3 n n n 4 n niaf (iag k ) k f (ia g k )     , 1 2
2

2
f

c

  



, 

2 2
2

f
c





, 3 2
2

f
c





,     4 2
2

f
c





.     
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4. APPLICATION 

The plane boundary subjects to an instantaneous normal point 

force and the boundary surface is isothermal, the boundary 

conditions x=0 are: 

  T(0,z,t) 0, ,0zz p  0xz  ,                              

(30)                

 Applying the boundary conditions (30) at the surface 0x   

of the medium, we obtain a system of three equations in the 

unknowns nM  (n 1, 2, 3) . After applying the inverse of 

matrix method, we the solutions as: 

        



















































0 

p-

0

M

M

M
1

321

321

321

3

2

1





hhh

             (31) 

 (29) 

5. NUMERICAL RESULTS 

 In order to illustrate our theoretical results obtained in 

preceding section and to compare these in the context of 

various theories of thermoelasticity, we now present some 

numerical results. In the calculation process, we take the case 

of magnesium crystal [18] as material subjected to mechanical 

and thermal disturbances. Since, ω  is the complex constant, 

then we taken ζiωω 0  . The other constants of the 

problem are taken as 2ω0  , 1ζ  , 0 0.02   and the 

physical constants used are: 

o
, C0

3 11 2 11 2
1.74 gm / cm λ 9.4 10 dyne / cm , 4.0 10 dyne / cm , T 23 ,       

E
2 4

k 0.6 10 cal / cm sec C, 0.779 10 dyne, C 0.23 cal / gm C.
  

     

  

The variation of the temperature distribution T, components of 

displacement u and w , normal stress zzσ  and tangential 

stress xzσ with distance x at the plane 1z   and 20 p  for 

CD and LS theories have been shown by solid and dashed 

lines respectively for generalized thermoelasticity medium 

with rotation ( 0.2  ) and without rotation ( 0.0  ). These 

distributions are shown graphically in Figs. 1-5 for thermal 

sources for time t 0.1 . We notice that the results for the 

temperature, the displacement and stress distributions when 

the relaxation time is including in the heat equation are 

distinctly different from those when the relaxation time is not 

mentioned in heat equation, because the thermal waves in the 

Fourier's theory of heat equation travel with an infinite speed 

of propagation as opposed to finite speed in the non-Fourier 

case. This demonstrates clearly the difference between the 

coupled and the generalized theories of thermoelasticity. 

6. CONCLUSIONS 

 The curves in the context of the CD and LS theories 

decrease exponentially with increasing x, this indicates 

that the thermoelastic waves are un-attenuated and non-

dispersive, where purely thermoelastic waves undergo 

both attenuation and dispersion. 

 The curves of the physical quantities with LS model in 

most of figures are lower in comparison with those under 

CD model. 

 Analytical solutions based upon normal mode analysis 

for themoelastic problem in solids have been developed 

and utilized.  

 It can be concluded that a change of volume is attended 

by a change of the temperature while the effect of the 

deformation upon the temperature distribution is the 

subject of the theory of thermoelasticity. 

 The value of all the physical quantities converges to zero 

with an increase in distance x and all functions are 

continuous. 

  The presence of rotation plays a significant role in all 

the physical quantities.  

 

    

 

 

 

 

 

Fig 1- Temperature distribution at different rotation 
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Fig—2: Normal displacement distribution at different rotation  

 

 

 

 

 

 

 

Fig—3: Horizontal displacement distribution at different 

rotation 

 

 

 

 

 

 

 

Fig—4: Normal stress distribution at different rotation 

  

 

 

 

 

 

 

 

Fig—5: Tangential stress distribution at different rotation  
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