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ABSTRACT 

Topological optimization is applied when design is at the conceptual level. In the present  work, optimality criteria approach is 

implemented for the topology optimization of the 2-D beam structure which is supported by both ends and loaded vertically in the 

middle of its upper edge and elastic plate with a central elliptical hole is subjected to uniform longitudinal tensile stress σ� at one 

end and clamped at the other end and analysis in ANSYS is done for quarter plate due to symmetry. Plane state of stress is 

assumed for the numerical examples considered. 

In ANSYS use of the Solid Isotropic Material with Penalization (SIMP) method is done for the penalization scheme and the 

Optimality Criterion approach is used for topology optimization of the problem. The results of beam structure performed by the 

ANSYS based Optimality criterion are validated and compared with the results obtained by Bi-directional Evolutionary Structural 

Optimization (BESO) method. 
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1. INTRODUCTION 

The paper presents the optimal design of the beam and elastic 

plate having elliptical hole at its centre. For given numerical 

problems the plane state of stress is considered. ANSYS is 

employed for carrying out topological optimization of the 

following structures. For example in the topology optimization 

of a beam structure, the discretization of the plate is done in 

small square elements where each element is controlled design 

variables which can vary continuously between 0 and 1. When 

a particular design variable has a value of 0, it is considered to 

be a hole, likewise, when a design variable has a value of 1, it 

is considered to be fully material. The elements with 

intermediate values are considered materials of intermediate 

densities. 

The development of topological optimization can be attributed 

to Bendsøe and Kikuchi [1988], [1]. They presented a 

homogenization based optimization approach of topology 

optimization. The maximization of the integral stiffness of a 

structure composed of one or two isotropic materials of large 

stiffness using the homogenization technique was discussed by 

Thomsen [1992]. Numerical results are presented at the end of 

the paper.  

It is well known that the solid-void topology optimization 

problem for continuum structures without a minimum size 

constraint generally lacks a solution. With the finite element 

analysis, the ESO method was initially proposed by gradually 

removing less efficient material with lower sensitivity 

numbers from the ground structure so that the remaining 

structure evolves towards an optimum (Xie and Steven 1993, 

1997; Chu et al. 1996), [2]. It seems that the procedure 

coincides with finding a 0/1 solution by eliminating a feature 

smaller than one element. However, it is questionable when a 
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lot of elements are removed simultaneously and never 

recovered because elemental sensitivity numbers are 

established at elemental level.  

A later development in ESO is the introduction of 

Bidirectional ESO (BESO) where it allows elements to be 

added in the locations next to those elements with highest 

sensitivity numbers as well as to be removed in the region 

with lowest sensitivity numbers (Yang et al. 1999 [3]; Querin 

et al. 1998 [4]). However, this procedure is hard to control 

because there are two separate criteria for removing and 

adding elements. Therefore, we may get unsatisfactory results 

if the parameters are not set optimally (Rozvany 2008), [5]. 

More critical comments on various versions of ESO/BESO 

methods have been reviewed by Rozvany (Rozvany 2008; 

Tanskanen 2002 [6]; Edwards et al. 2007). 

The results of SIMP with a filter scheme indicates that the 

solution would be convergent to a nearly 0/1 design if one 

chooses p sufficiently big. It provides the possibility of BESO 

to obtain similar solutions with two discrete variables. 

One of the critical comments on the original ESO/BESO 

methods is that the procedure cannot be easily extended to 

other constraint, or multi-constraints problems (Rozvany 

2008). Huang and Xie (2009b), [7] have demonstrated that the 

current BESO method can be extended to other constraints 

such as displacement. This paper will extend the current 

BESO method to the stiffness optimization with a material 

volume constraint and a local displacement constraint. The 

need for such constraints often comes from the technological 

background of the problem where the displacement at a certain 

node, not under load, is desired to lie within a prescribed 

value. 

A web-based interface for a topology optimization program 

was presented by Tcherniak and Sigmund [2001]. The 

program is available over World Wide Web. The paper 

discusses implementation issues and educational aspects as 

well as statistics and experience with the program. Allaire et 

al. [2002] studied a level-set method for numerical shape 

optimization of elastic structures. The approach combines the 

level-set algorithm of Osher and Sethian with the classical 

shape gradient. Although this method is not specifically 

designed for topology optimization, it can easily handle 

topology changes for a very large class of objective functions. 

Rahmatalla and Swan [2004] presented a node-based design 

variable implementation for continuum structural topology 

optimization in a finite element framework and explored its 

properties in the context of solving a number of different 

design examples. 

Sigmund and Clausen [2007] derived an approach to solve 

pressure load problems in topology optimization. Using a 

mixed displacement–pressure formulation for the underlying 

finite element problem, we define the void phase to be an 

incompressible hydrostatic fluid. Rozvany [2008] evaluated 

and compared the established numerical methods of structural 

topology optimization that have reached the stage of 

application in industrial software. Dadalau et al. [2008] 

presented a new penalization scheme for the SIMP method. 

One advantage of the present method is the linear density-

stiffness relationship which has advantage for self weight or 

Eigen frequency problem. The topology optimization problem 

is solved through derived Optimality criterion method (OC), 

which is also introduced in the paper. Gunwant et al. obtained 

topologically optimal configuration of sheet metal brackets 

using Optimality Criterion approach through commercially 

available finite element solver ANSYS and obtained 

compliance versus iterations plots for various aspect ratio 

structures (brackets) under different boundary conditions. 

Chaudhuri [8] worked on stress concentration around a part 

through hole weakening a laminated plate by finite element 

method. Peterson [9] has developed good theory and charts on 

the basis of mathematical analysis and presented excellent 

methodology in graphical form for evaluation of stress 

concentration factors in isotropic plates under in-plane loading 

with different types of abrupt change, but no results are 

presented for transverse loading. Patle et. al.[10] determined 

stress concentration factors in plate with oblique hole using 

FEM. Various angle of holes have been considered to evaluate 

stress concentration factors at such holes. The stress 

concentration factors are based on gross area of the plate. 

The goal of topological optimization is to find the best use of 

material for a body such that an objective criterion (i.e. global 

stiffness, natural frequency, etc.) attains a maximum or 

minimum value subject to given constraints (i.e. volume 

reduction).  

In this work, maximization of static stiffness has been 

considered. This can also be stated as the problem of 

minimization of compliance of the structure. Compliance is a 
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form of work done on the structure by the applied load. Lesser 

compliance means lesser work is done by the load on the 

structure, which results in lesser energy is stored in the 

structure which in turn, means that the structure is stiffer.  

ANSYS employs gradient based methods of topology 

optimization, in which the design variables are continuous in 

nature and not discrete. These types of methods require a 

penalization scheme for evolving true, material and void 

topologies. SIMP (Solid Isotropic Material with Penalization) 

is a most commonly penalization scheme, and is explained in 

the next section. 

 

2. MATERIALS AND METHODS 

The topology optimization is performed using optimality 

criteria method through ANSYS software. There are many 

approaches derived to solve pressure load problems in 

topology optimization. Structural analysis is used to assess the 

behaviour of engineering structures under the application of 

various loading conditions. Commonly used structural analysis 

method includes analytical methods, experimental methods 

and numerical methods. 

Analytical method provides accurate solutions with 

applications limited to simple geometries. Experimental 

methods are used to test prototypes or full scale models. 

However they are costly and may not be feasible in certain 

cases. Numerical methods are most sought-after technique for 

engineering analysis which can treat complex geometries also. 

Among many numerical methods, finite element analysis 

(FEM) is the most versatile and comprehensive numerical 

technique in the hands of engineers today. 

This process leads to a set of linear algebraic simultaneous 

equations for the entire system that can be solved to yield the 

required field variable (e.g., strains and stresses). As the actual 

model is replaced by a set of finite elements, this method gives 

an approximate solution rather than exact solution. However 

the solution can be improved by using more elements to 

represent the model.  

 

Fig -1: Layout of structural optimization 

  

2.1 The Optimality Criterion approach    

As discussed earlier that the optimal design of the problems is 

performed using ANSYS which is based on optimality 

criterion approach. The discrete topology optimization 

problem is characterized by a large number of design 

variables, N in this case. It is therefore common to use 

iterative optimization techniques to solve this problem, e.g. the 

method of moving asymptotes, optimality criteria (OC) 

method, to name two. Here we choose the latter. At each 

iteration of the OC method, the design variables are updated 

using a heuristic scheme.  

Based on these expressions, the design variables are updated 

as follows:  

The Lagrange multiplier for the volume constraint  is 

determined at OC iteration using a bisection algorithm ��. is 

the value of the density variable at each iteration step. ��   is 

the displacement field at each iteration step determined from 

the equilibrium equations.  

The optimization algorithm structure is explained in the 

following steps:  

- Make initial design, e. g. homogenous distribution of 

material.  

-For this distribution of density, compute by finite 

element method the resulting displacements and strains.  

-Compute the compliance of the design. If only marginal 

improvement in compliance over last design, stop 

iterations. Else, continue.  

-Compute the update of design variable, this step also 

consists of an inner iteration loop for finding the value of 

Lagrange multiplier for the volume constraint.  

-Repeat the iteration loop.  
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This paper considers the maximization of static stiffness 

through the inbuilt topological optimisation capabilities of the 

commercially available FEA software to search for the 

optimum material distribution in two plane stress structures. 

The optimum material distribution depends upon the 

configuration of the initial design space and the boundary 

conditions (loads and constraints). The goal of the paper is to 

minimize the compliance of the structure while satisfying the 

constraint on the volume of the material reduction. 

Minimizing the compliance means a proportional increase in 

the stiffness of the material. A volume constraint is applied to 

the optimisation problem, which acts as an opposing 

constraint. To visualize, more the volume of material, lower 

will be the compliance of the structure and higher will be the 

structural stiffness of the structure. For implementation of this, 

APDL codes for various beam modelling and topological 

optimisation were written and run in ANSYS. 

 

2.2 Specimen Geometry and Boundary Conditions 

In the present investigation, two specimen geometries and 

boundary conditions applied have been used as shown in the 

figures below. The specimen 1 is taken from the research 

paper of X. Huang · Y. M. Xie [2010], (Received: 22 August 

2008 / Revised: 26 December 2008 / Accepted: 19 March 

2009 / Published online: 9 April 2009 © Springer-Verlag 

2009). Both the models are under plane state of stress. 

The following numerical problems are considered as the linear 

elastic structures under plane state of stress conditions, point 

load in beam structure and longitudinal tensile stress in elastic 

plate having elliptical hole in its centre. 

 

2.2.1 Model 1: Example 1 is a stiffness topology optimization 

problem for a beam structure which is supported by both ends 

and vertically loaded (P = 100 N) in the middle of its upper 

edge as depicted in Fig.1. The computations are performed in 

the domain with 200 × 100 four-node plane stress elements. 

The material is assumed with Young’s modulus E = 1 GPa, 

Poisson’s ratio ν = 0.3. The volume constraint is 30% of the 

design domain. The other parameters used for the following 

simulations are ���� = 0.001, p = 3, ER = 2% and 	��� = 1.5 

mm. The optimal topology without any displacement 

constraint is shown in Fig. 4 from the BESO method and in 

Fig. 5 the optimal design for the given problem using 

optimality criteria approach through ANSYS software 

package. Its mean compliance is 191 Nmm by BESO method 

and the use of OC approach is discussed in the results section 

(3.2). 

 

 

Fig-2: Design domain and loading and boundary conditions of 

Model 1 

 

2.2.2 Model 2: In structure 2, the topology optimization of a 

central elliptical hole on the stress distribution and deflection 

in a rectangular plate of dimensions 400mm x 100mm x 

10mm under longitudinal static load of magnitude 10MPa has 

been analysed using optimality criterion approach in ANSYS. 

Due to the presence of elliptical hole in the centre of plate, the 

maximum equivalent Von-Mises stress induced is expected at 

the corner of major axis of the hole. Due to the symmetry of 

the problem about the centre we are taking only a quarter plate 

for optimization in ANSYS.  The Young’s modulus (E) and 

Poisson’s Ratio (ν) of the steel plate are taken to be equal to 

2.1x10^5  N/mm^2 and 0.3 respectively. 

 

Fig-3: Geometry and boundary conditions of elastic plate with 

central elliptical hole 
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3. RESULTS 

In this section the optimal topology of structures 1 and 2 is 

shown obtained from the Optimality Criteria Approach 

through ANSYS. Further the initial and final values of 

compliances for both the structures are shown in the charts[1 

and 2]. Chart shows the graph between Compliance and 

iterations. 

 

3.1 Structure Compared: 

In this section, final compliance and optimal shape of the 

model 1(i.e. beam structure) obtained with the help of ANSYS 

based Optimality Criterion has been compared with a BESO 

method based a beam structure which is supported by both 

ends and vertically loaded (P = 100 N) in the middle of its 

upper edge. 

 

3.2 Optimized Shape: 

Figure 4, Shows the topology optimization through 

Bidirectional ESO Method which is nearly same as the 

topologically optimized shape as obtained for the beam 

structure under the given boundary conditions is obtained by 

using optimality criteria using ANSYS. Figure 5, shows the 

topologically optimized shape through ANSYS. 

 

Fig.4: Optimal design for Model 1 by BESO method 

 

Fig-5: Optimal design for Model 1 using optimality criteria 

approach 

 

The topologically optimized shape as obtained for the flat 

plate structure with a central elliptical hole under the given 

boundary conditions is obtained by using optimality criteria 

using ANSYS. Figure shows the topologically optimized 

shape. 

 

 

Fig-6: Optimal design for Model 2 using optimality criteria 

approach 

 

3.3 Compliance: 

For structure 1, the initial value of compliance was 966.76 

Nmm and the final value as obtained after 31 iterations is 

184.5 Nmm. A reduction of 597.76 Nmm from its initial 

value. Variation of compliance with iteration is shown in the 

graph below. Vertical axis represents the compliance and the 

horizontal axis represents the iteration. 

 

Fig-7: Compliance and iteration plot for beam structure 

(Model 1) 

 

For structure 2, the initial value of compliance was 15.697 

Nmm and the final value as obtained after 25 iterations is 

10.231 Nmm. A reduction of 5.466 Nmm from its initial 
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value. Variation of compliance with iteration is shown in the 

graph below. Vertical axis represents the compliance and the 

horizontal axis represents the iteration. 

 

 

Fig-8: Compliance and iteration plot for central elliptical hole 

flat plate (Model 2) 

 

The compliance obtained by ANSYS is nearly same as that 

obtained by BESO method. 

 

3.3.1 For structure 1: 

Compliance obtained by BESO method= 191Nmm. 

Compliance obtained by ANSYS using optimality criteria 

method = 184.5 Nmm 

Variation in two results= 6.5  

The optimized shape obtained by optimality criteria using 

ANSYS is nearly same as that by BESO method. 

 

3.3.2 For structure 2: 

Compliance obtained by ANSYS using optimality criteria 

method = 10.231 Nmm 

The optimized shape obtained for the elastic plate with a 

central elliptical hole by optimality criteria using ANSYS. 

 

Table -1: Properties of Structures and final value of 

Compliances 

 

S.No. Structure E ʋ Compliances 

1. Beam 

Supported 

at ends 

1 GPa 0.3 184.5 

2. Plate with 2.1x105  0.3 10.231 

a central 

elliptical 

hole 

N/mm2 

 

The above table shows the Young’s modulus (E) and 

Poisson’s ratio (ʋ) & final compliances value for structures 

optimized through ANSYS. 

 

3. CONCLUSIONS 

The optimized shape of model 1 using optimality criteria in 

ANSYS is nearly the same as that by the BESO method of 

topological optimization. Further the variation in compliance 

is very small. Also the compliance obtained from optimality 

criteria using ANSYS is less than that obtained by the BESO 

method, which is our basic objective of topological 

optimization. Thus ANSYS is an effective tool for topological 

optimization and the results obtained by ANSYS are more 

effective than the result obtained by the other method taken 

for comparison in this paper. For further work topology 

optimization of flat plate with an elliptical hole has been done.  
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