

Combining Ability Studies for Salinity Tolerant Traits in Rice (Oryza Sativa L) in Different Seasons under Saline Conditions

K. Nagendra Rao¹, Y. Suryanarayana² and T. Anuradha³

¹K. Nagendra Rao, Plant Breeding, Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Machilipatnam - 521002, Andhra Pradesh, India

kaki.phd14@gmail.com

²Y. Suryanarayana, Plant Breeding, Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Nellore, Andhra Pradesh, India

Surya_vijetha@yahoo.co.in

³T. Anuradha, Plant Breeding, Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Machilipatnam - 521002, Andhra Pradesh, India anuprasadkattoju@gmail.com

ABSTRACT

Combining ability study of salinity tolerant traits from diallel analysis of 10 genotypes in different seasons under saline conditions revealed the mean squares due to *gca* and *sca* indicated the importance of both additive and non-additive gene actions. In general, MTU 1061 and MTU 1001 were noticed to be good general combiners in all the seasons for grain yield and salinity tolerance traits, indicating their potential in development of high yielding varieties with resistance to salinity. Further, BPT 2231 was noticed to be a good general combiner for grain yield during normal *kharif*, while NLR 40024 was noticed to be a good general combiner for grain yield, and shoot dry weight during late *kharif* and normal *rabi* seasons. However, NLR 33358 was observed to be a good general combiner for grain yield, root length, root dry weight, shoot dry weight and shoot sodium content during normal *rabi*, while NLR 33359 was noticed to be a good general combiner for grain yield and shoot sodium content during both *rabi* seasons. Hence, these parents could be exploited for development of salt tolerant high yielding varieties.

Keywords: Combining ability, Rice, Salinity, Seasons.

1. INTRODUCTION

Rice is an important cereal crop in India. It is grown mainly in tropical and subtropical zones. The productivity of rice is being affected by biotic and abiotic factors. Among the various abiotic factors, salinity is an important yield limiting factor in coastal saline areas. Salinity and sodicity are gradually becoming constraints to rice production in coastal region of Andhra Pradesh. Investigation of the effects of salinity on rice have been under way for more than 50 years and attempts to enhance the salt tolerance in rice through breeding started from the early 1970s (Akbar *et al.*, 1972). Genetic information about the combining ability of parents and hybrids and nature of gene action involve in the

inheritance of a trait would be of immense value to plant breeders in the choice of parents and to identify potential crosses of practical use.

2. MATERIAL AND METHODS

In the present investigation ten genotypes viz., NLR-3041, NLR-33358, NLR-33359, NLR-40024, NLR-33671, NLR-33057, BPT-2231, MTU-1061, MTU-1001 and PUSA-1121 were selected as parents based on D² statistic. 45 single crosses without reciprocals in 10 x10 full-diallel were attempted and successfully produced around 45-50g seed of each of the executed crosses. The experiment was conducted in 2 environments each in *kharif* and *rabi* seasons of 2011.

Each season is further divided in to normal and late sowing situations prevailing in Agricultural Research Station, Machilipatnam, Krishna District depending on the release of canal water. Accordingly, the parents and their 45 F_1 hybrids were studied in these 4 environments viz., Normal Kharif , Late

3. RESULTS AND DISCUSSION

The mean squares due to gca, sca and their interactions with seasons for different characters studied is presented in Table 1. Mean squares due to gca and sca were found significant for all traits across the seasons. These results revealed the importance of both additive and non-additive gene actions for different traits studied during the four seasons. Similar results were also reported earlier for root length (Price et al. 1997 and Shehata, 2004), root dry weight (Shahid et al. 1994 and Shehata, 2004), shoot length (Shehata, 2004) and shoot dry weight (Shahid et al. 1994 and Shehata, 2004). Further variance ratio of gca:sca indicated the pre-dominant role of non-additive gene action for all characters studied in the present investigation. Similar pre-ponderant role of nonadditive gene action for shoot sodium content (Lee et al. 1996 and Shanthi et al. 2011), shoot potassium content (Shanthi et al. 2011) and grain yield plant⁻¹ (Dalvi and Patel, 2009, Salgotra et al. 2009 and Kumar Babu et al. 2010).

3.1 General Combining Ability Effects

The general combining ability effects (*gca*) for various characters studied in different seasons in the present investigation are presented in Table 2.

3. 1.1 Shoot length at seedling stage

During normal *kharif*, four parents had recorded positive and significant *gca* effects for the trait and hence, were identified as good combiners for shoot length during the season. During late *kharif*, five parents had recorded positive and significant *gca* effects for the trait and hence, were identified as good combiners for shoot length during the season. General combining ability effects for shoot length in normal *rabi*, in desired direction were recorded by MTU 1001 and MTU1061 and hence, were identified as good combiners for shoot length during the season. During late rabi season NLR33359, MTU1061 and MTU1001 had recorded positive and

Kharif in 2011, Normal r*abi* 2011-12 and Late r*abi*, 2012. The Statistical analysis for estimating the combining ability was carried out as per model I and method II (F₁s + parents) (fixed effects) of Griffing (1956a)

significant *gca* effects for the trait and hence, were identified as good combiners for shoot length during the season.

3.1.2 Shoot dry weight at seedling stage

During normal kharif, two parents (MTU 1061 and MTU 1001) had recorded positive and significant gca effects for the trait and hence, were identified as good combiners for shoot dry weight during the season. Significant gca effects in desired direction was recorded for this trait in six parents, hence, were identified as good combiners for shoot dry weight during the season. Among the parents in normal rabi, the estimates of gca effects were significant and positive for NLR33358, NLR40024, NLR33671, MTU1061 and MTU1001 and hence, were identified as good combiners for shoot dry weight during the season. During late rabi, four parents had recorded positive and significant gca effects for the trait and hence, were identified as good combiners for shoot dry weight during the season.

3.1.3 Shoot sodium content at maximum tillering stage

During normal kharif, NLR33057, NLR33358, NLR33359, MTU1061 and MTU1001 had recorded significant and negative gca effects, desirable for the character and hence were recognized as good combiners for the trait during normal kharif season. In late kharif, NLR33057, NLR33358, NLR33359, MTU1061 and MTU1001 had recorded significant and negative gca effects, desirable for the character and hence were recognized as good combiners for the trait during late kharif season. Among the parents NLR33057, NLR33358, NLR33359, MTU1001 and MTU1061 had recorded significant negative gca effects for this trait and hence were recognized as good combiners for the trait during normal rabi season. During late rabi, NLR 33358, NLR33359, MTU1061 and MTU1001 had recorded significant and negative gca effects for the character and hence were recognized as good combiners for the trait during late rabi season.

3.1.4 Shoot potassium content at maximum tillering stage

During normal *kharif*, two parents had recorded positive and significant *gca* effects for the trait and hence, were identified as good combiners for shoot potassium content. Further, significant *gca* effects in desired direction was recorded for this trait in MTU 1001 and MTU1061 and hence, were identified as good combiners for shoot potassium content during late *kharif* season. Among the parents in normal *rabi*, the estimates of *gca* effects were significant and positive for MTU1061 and MTU1001 and hence, were identified as good combiners for shoot potassium content during the season. During late *rabi*, two parents had recorded positive and significant *gca* effects for the trait and hence, were identified as good combiners for shoot potassium content during the season.

3.1.5 Root length at seedling stage

During normal *kharif*, four parents had recorded positive and significant *gca* effects for the trait and hence, were identified as good combiners for root length. Estimates of *gca* effects in late *kharif*, in desired direction were recorded for this trait in NLR33359, NLR40024, MTU 1001 and MTU1061 and hence, were identified as good combiners for root length during the season. Among the parents in normal *rabi*, the estimates of *gca* effects were significant and positive for NLR33358, MTU 1061 and MTU1001 and hence, were identified as good combiners for root length during the season. During late *rabi*, three parents had recorded positive and significant *gca* effects for the trait and hence, were identified as good combiners for root length during the season.

3.1.6 Root dry weight at seedling stage

During normal *kharif*, two parents (MTU1061 and MTU 1001) had recorded significant *gca* effects for the trait during the season and hence, it was identified as good combiner for root dry weight. In late *kharif*, significant *gca* effects in desired direction was recorded for this trait in MTU 1061 and MTU1001 and hence, were identified as good combiners for root dry weight during the season. Among the parents in normal *rabi*, the estimates of *gca* effects were significant and positive for NLR33358, MTU1061 and MTU1001 and hence, were identified as good combiners for root dry weight during the season. During late *rabi*, three parents (NLR33358, MTU 1061 and MTU 1001) had recorded positive and significant

gca effects for the trait and hence, were identified as good combiners for root dry weight during the season.

3.1.7 Grain yield plant⁻¹ (g)

During normal kharif, three parents had recorded positive and significant gca effects for the trait and hence, were identified as good combiners for grain yield plant⁻¹. In late kharif, significant gca effects in desired direction were recorded for this trait in NLR40024, MTU 1061 and MTU1001 and hence, were identified as good combiners for g grain yield plant⁻¹ during the season. Among the parents in normal rabi, the estimates of gca effects were significant and positive for NLR33358, NLR33359, NLR40024, MTU1061 MTU1001 and hence, were identified as good combiners for grain yield plant⁻¹ during the season. During late rabi, three parents had recorded positive and significant gca effects for the trait and hence, were identified as good combiners for grain yield plant⁻¹ during the season. High gca effects for this trait was reported by Pradhan and Singh (2008).

In general, MTU 1061 and MTU 1001 were noticed to be good general combiners in all the seasons for grain yield and salinity tolerance traits studied under saline conditions in the present investigation, indicating their potential in development of high yielding varieties with resistance to salinity. Further, BPT 2231 was noticed to be a good general combiner for grain yield during normal *kharif*, while NLR 40024 was noticed to be a good general combiner for grain yield, and shoot dry weight during late *kharif* and normal *rabi* seasons. However, NLR 33358 was observed to be a good general combiner for grain yield, root length, root dry weight, shoot dry weight and shoot sodium content during normal *rabi*, while NLR 33359 was noticed to be a good general combiner for grain yield and shoot sodium content during both *rabi* seasons studied in the present investigation.

3.2. Specific combining ability

The specific combining ability (*sca*) effect is an average performance of a cross expressed as a deviation from the population mean and is correlated with parental *gca* effects (Saidaih *et al.* 2010a). Specific combining ability effects of the 45 hybrids studied for salinity tolerant traits, and grain yield in different seasons are presented in Table 3.

3.2.1 Shoot length at seedling stage

During normal kharif, the sca effects were noticed to range from -9.92(NLR 33057 X NLR 33671) to 11.63 (NLR 33671 X BPT 2231). Nine hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for shoot length during the season. Specific combining ability effects for shoot length in late kharif, varied from -12.80 (NLR 40024 X BPT2231) to 16.55 (NLR 33359 X MTU1001). Sixteen hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for shoot length during the season. Estimates of sca effects in normal rabi, ranged from -13.06 (NLR 33057 X NLR 33671) to 8.19 (MTU 1001 X BPT 2231). Seven hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for shoot length during the season. During late rabi, the sca effects were noticed to range from -5.49 (NLR 33358 X NLR 40024) to 8.97 (MTU 1061 X MTU 1001). Three hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for shoot length during the season.

3.2.2 Shoot dry weight at seedling stage

During normal kharif, the sca effects were noticed to range from -0.21(MTU 1001 X PUSA 1121) to 0.48 (MTU 1061 X MTU 1001). Twenty eight hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for shoot dry weight during the season. Specific combining ability effects for shoot dry weight in late kharif, varied from -0.13 (NLR33359 X NLR40024) to 0.22 (NLR 33359 X MTU1001). Thirteen hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for shoot dry weight during the season. Estimates of sca effects in normal rabi, ranged from -0.17 (MTU1061 X PUSA1121) to 0.48 (MTU 1061 X MTU1001). Fourteen hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for shoot dry weight during the season. During late rabi, the sca effects were noticed to range from -0.15 (NLR 33359 X MTU1001) to 0.53 (MTU 1061 X MTU 1001). Fifteen hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for shoot dry weight during the season. Sanjay singh et al. (2008) reported high sca effects for shoot dry weight.

3.2.3 Shoot sodium content at maximum tillering stage

For shoot sodium content in normal kharif, exhibited sca effects for crosses from -0.53 (MTU 1061 X BPT2231) to 0.41 (NLR33057 X PUSA1121). Twenty three hybrids had recorded significant and negative sca effects for the character and hence were recognized as good specific combiners during normal kharif season. Specific combining ability effects for shoot sodium content in late kharif, varied from -0.49 (PUSA1121 X BPT2232) to 0.51 (NLR 33359 X PUSA1121). Twenty five had recorded significant and negative sca effects for the character and hence were recognized as good specific combiners during late kharif season. Estimates of sca effects in normal rabi, ranged from -0.39 (MTU1061 X BPT2231) to 0.44 (NLR33358 X NLR40024). Twenty four hybrids had recorded significant and negative sca effects for the character and hence were recognized as good specific combiners during normal rabi season. During late rabi, the sca effects were noticed to range from -0.42 (MTU1061 X BPT2231) to 0.78 (NLR33057 X PUSA1121). Twenty five hybrids had recorded significant and negative sca effects for the character and hence was recognized as good specific combiners during late rabi season.

3.2.4 Shoot potassium content at maximum tillering stage

For shoot potassium content in normal kharif, exhibited sca effects for crosses from -0.29 (NLR33359 X NLR33671) to 0.61 (NLR33359 X MTU1061). Fifteen hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for shoot potassium content during the season. Specific combining ability effects for shoot potassium content in late kharif, varied from -0.45 (MTU1001 X BPT2231) to 0.62 (NLR 33671 X MTU1061). Thirteen hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for shoot potassium content during the season. Estimates of sca effects in normal rabi, ranged from -0.29 (NLR40024 X NLR3041) to 0.78 (MTU1061 X MTU1001). Fifteen hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for shoot potassium content during the season. During late rabi, the sca effects were noticed to range from -0.27 (PUSA1121 X BPT2231) to 0.54

(NLR33671 X MTU1061). Fifteen hybrids had recorded positive and significant effects and hence, were identified as

3.2.5 Root length at seedling stage

During normal kharif, the sca effects were noticed to range from -3.02 (NLR33057 X NLR33671) to 2.81 (NLR3041 X MTU 1061). Twelve hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for root length during the season. combining ability effects for root length in late kharif, varied from -3.66 (MTU1001 X PUSA1121) to 3.23 (NLR40024 X MTU1001). Eleven hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for root length during the season. Estimates of sca effects in normal rabi, ranged from -2.69 (MTU1001 X PUSA1121) to 2.57 (NLR3041 X MTU1001). One hybrid (NLR 3041 X MTU1001) had recorded positive and significant effects and hence, was identified as good specific combiners for root length during the season. During late rabi, the sca effects were noticed to range from -3.51 (MTU1001 X PUSA1121) to 2.89 (NLR3041 X PUSA1121). One hybrid (NLR3041 X PUSA1121) had recorded positive and significant effects and hence, was identified as good specific combiners for root length during the season.

3.2.6 Root dry weight at seedling stage

During normal kharif, the sca effects were noticed to range from -0.03 (NLR33359 X MTU1061) to 0.04 (NLR3041 X MTU 1061). Only one hybrid i.e., NLR3041 X MTU 1061(0.04) among the forty five hybrids had recorded significant and positive effects and hence, was identified as good specific combiners for root dry weight during the season. Specific combining ability effects for root dry weight in late kharif, varied from -0.05 (NLR33359 X NLR40024) to 0.05 (NLR 33359 X BPT2231). Four hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for root dry weight during the season. Estimates of sca effects in normal rabi, ranged from -0.05 (NLR33057 X NLR40024) to 0.04 (NLR33057 X NLR3041, NLR33057 X MTU1001, NLR33358 X PUSA1121 and NLR3041 X MTU1001). Four hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for root dry weight during the season. During late rabi, the sca effects were noticed to range from -0.04 (NLR33057 X NLR3041 and NLR33057 X NLR33671)

good specific combiners for shoot potassium content during the season.

to 0.04 (NLR33057 X PUSA1121 and NLR33359 X NLR33671). Two hybrids i.e., NLR33057 X PUSA1121 and NLR33359 X NLR33671 (0.04) had recorded positive and significant effects and hence, were identified as good specific combiners for root dry weight during the season.

3.2.7 Grain yield plant⁻¹

During normal kharif, the sca effects were noticed to range from -2.31 (MTU1001 X PUSA1121) to 5.09 (MTU1001 X Twelve hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for grain yield plant⁻¹ during the season. Specific combining ability effects for grain yield plant⁻¹ in late kharif, varied from -4.19 (NLR33359 X NLR40024) to 8.95 (NLR33359 X MTU1001). Eight hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for grain yield plant⁻¹ during the season. Estimates of sca effects in normal rabi, ranged from -5.53 (MTU1001 X PUSA1121) to 13.93 (NLR33359 X MTU1001). Fifteen hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for grain yield plant-1 during the season. During late rabi, the sca effects were noticed to range from -5.76 (MTU1001 X PUSA1121) to 15.99 (NLR33359 X MTU1001). Eight hybrids had recorded positive and significant effects and hence, were identified as good specific combiners for grain yield plant⁻¹ during the season. Rahimi et al. (2010) reported significant and positive sca effects for grain yield plant. A high sca effect for grain yield per plant was reported by Pradhan and Singh (2008).

In general, the hybrids, NLR 33359 X MTU 1001, NLR 40024 X MTU 1061 and NLR 40024 X MTU 1001 were noticed to be good specific combiners across all the seasons studied with regards to grain yield and salinity tolerance traits, namely, shoot potassium and sodium content, indicating their potential as promising hybrids for saline conditions. The hybrids, NLR 33057 X NLR 3041, NLR 33057 X MTU 1061 and MTU 1001 X BPT 2231 were also noticed to be good specific combiners for normal and late *kharif* seasons studied with regards to grain yield and few other traits studied. The hybrid, NLR 40024 X PUSA 1121 was noticed to be a good specific combiner for normal *kharif* and *rabi* in addition to late *rabi*

with regards to grain yield and shoot sodium content. Further, the hybrids NLR 33358 X MTU 1061, NLR 33358 X MTU 1001 and NLR 33359 X MTU 1061 were noticed to be good specific combiners for both normal and late *rabi* with regards to grain yield and shoot sodium content.

LITERATURE CITED

- [1] Akbar, M.T., Yabuno and Nakao, O.S, Breeding for saline resistant varieties of rice I. Variability for salt tolerance among some rice varieties. *Japanese Journal of Breeding*. 22: 227-284, 1972.
- [2] Dalvi, V.V and Patel, D.V, Combining ability analysis for yield in hybrid rice. *Oryza*. 46(2): 97-102, 2009.
- [3] Griffing, B, Concept of general and specific combining ability in relation to diallel crossing systems. *Australian Journal of Biological Sciences*. 9: 463-493, 1956.
- [4] Kumar Babu, G., Satyanarayana, P.V., Panduranga Rao, C and Srinivasa Rao, V, Heterosis for yield, components and quality traits in rice (*Oryza sativa* L.). *The Andhra Agricultural Journal*. 57 (3): 226-229, 2010.
- [5] Lee, K.S., Senadhira, D and Gregorio, G.B, Genetic analysis of salinity tolerance in japonica rice. SABRAO Journal. 28(2): 7-13, 1996.
- [6] Pradhan, S.K and Singh, S, Combining ability and gene action analysis for morphological and quality traits in basmati rice. *Oryza*. 45(3): 193-197, 2008.
- [7] Rahimi, M., Rabiei, B., Samizadeh, H and Ghasemi, A.K. Combining ability analysis in rice (*Oryza sativa L.*) cultivar. *Journal of Agricultural Science and Technology*, 12(2): 223-231, 2010.
- [8] Saidaiah, P., Ramesha, M.S and Sudheer Kumar, S, Line x tester analysis in rice (*Oryza sativa* L.). *Madras Agricultural Journal*. 97 (4-6): 110-113, 2010.
- [9] Salgotra, R.K., Gupta, B.B and Praveen Singh, Combining ability studies for yield and yield components in Basmati rice. *Oryza*. 46(1): 22-25, 2009.
- [10] Sanjay Singh., Singh, A.K., Singh, H.P and Singh, R.S, Genetic analysis for seed germination, callus induction and survival of rice under salt at in vitro conditions. *Oryza*. 45(1): 12-17, 2008.
- [11] Shahid, M., Latif, T., Iqbal, M and Khan, M.A, Genetic studies on drought tolerance in rice. *Sarhad Journal of Agriculture*. 10(6): 671-674, 1994.

- [12] Shanthi, P., Jebaraj, S., and Geetha, S, Study on gene action for sodic tolerance traits in rice (*Oryza sativa* L.). *Electronic Journal of Plant Breeding*. 2(1): 24-30, 2011.
- [13] Shehata, S.M, Lines x testers analysis of combining ability under salinity and drought conditions in rice (*Oryza sativa* L.). *Egyptian Journal of Agricultural Research*. 82(1): 119-138, 2004.

Table .1 Mean squares due to gca, sca and their interactions with seasons for salinity tolerant traits and grain yield in rice under saline conditions

Source of			Shoot length at	Shoot Dry weight at seedling stage				Shoot sodium content at Maximum tillering stage					
variation	df	Normal kharif	Late kharif	Normal rabi	Late rabi	Normal kharif	Late kharif	Normal rabi	Late rabi	Normal kharif	Late kharif	Normal rabi	Late rabi
gca	9	123.93**	155.89**	146.41**	168.32**	0.06**	0.03**	0.06**	0.05**	0.2**	0.15**	0.33**	0.34**
sca	45	52.51**	54.70**	33.06**	19.69**	0.05**	0.01**	0.02**	0.02**	0.08**	0.08**	0.06**	0.06**
Error	108	32.12	4.03	7.1	7.12	0.0003	0.0009	0.0008	0.00072	0.0004	0.00086	0.0006	0.0003
σ^2 gca		9.43	12.66	11.61	13.43	0.005	0.002	0.005	0.004	0.02	0.01	0.03	0.028
σ ² sca		41.8	50.67	25.96	12.57	0.046	0.009	0.021	0.02	0.08	0.08	0.06	0.06
σ^2 gca / σ^2 sca		0.23	0.25	0.45	1.07	0.12	0.24	0.24	0.23	0.21	0.16	0.49	0.45

Table.1 Contd....

Source of		Shoot pota		nt at Maximu age	ım tillering			ength at ng stage		Root Dry weight at seedling stage			
variation	variation df	Normal kharif	Late kharif	Normal rabi	Late rabi	Normal kharif	Late kharif	Normal rabi	Late rabi	Normal kharif	Late kharif	Normal rabi	Late rabi
gca	9	0.88**	0.69**	0.98**	0.82**	5.04**	11.54**	7.85**	12.51**	0.0006	0.0016**	0.003**	0.003**
sca	45	0.11**	0.12**	0.11**	0.08**	3.17**	4.12**	2.56**	2.8**	0.0003	0.0006*	0.0007**	0.0006**
Error	108	0.0005	0.002	0.0003	0.00096	0.2	0.2	1.09	1.45	0.0003	0.0004	0.0003	0.0004
σ^2 gca		0.073	0.06	0.08	0.07	0.4	0.95	0.56	0.92	0.00002	0.0001	0.0002	0.0002
σ^2 sca		0.104	0.12	0.11	0.08	2.97	3.91	1.47	1.35	0.00005	0.0002	0.0004	0.0002
σ^2 gca / σ^2 sca		0.701	0.51	0.75	0.86	0.14	0.24	0.38	0.68	-0.66	0.46	0.5	0.87

^{*}Significant at 5 per cent level

^{**}Significant at 1 per cent level

Table 1 Contd....

			Grain yi	eld plant ⁻¹	
Source of variation	df	Normal kharif	Late kharif	Normal <i>rabi</i>	Late rabi
gca	9	61.38**	12.81**	47.13**	55.74**
sca	45	7.08**	6.97**	21.21**	18.23**
Error	108	0.26	0.63	0.45	0.79
σ^2 gca		5.09	1.01	3.89	4.58
σ^2 sca		6.82	6.34	20.76	17.45
σ^2 gca / σ^2 sca		0.75	0.16	0.19	0.26

Table. 2 General combining ability effects of the parents for salinity tolerance traits and grain yield in different seasons under saline conditions

	Shoot Length at seedling stage					noot Dry weight	at seedling st	age	1	Shoot sodium co	ontent at M.T.	.S
Parent	Normal kharif	Late kharif	Normal rabi	Late rabi	Normal kharif	Late kharif	Normal rabi	Late rabi	Normal kharif	Late kharif	Normal rabi	Late rabi
NLR33057	-1.57	1.75**	-0.75	0.87	-0.03**	0.03**	-0.01	0.02**	-0.05**	-0.03**	-0.04**	0.02**
NLR33358	0.02	2.19**	1.07	0.13	0.01	0.03**	0.03**	0.02**	-0.09**	-0.06**	-0.07**	-0.07**
NLR33359	-1.89*	-1.32*	0.45	1.71*	-0.04**	0.01	0.01	0.01	-0.05**	-0.03**	-0.06**	-0.06**
NLR40024	2.00*	1.85**	1.41	0.75	-0.01	0.03**	0.05**	-0.05**	0.02**	0.05**	0.02**	0.02**
NLR3041	2.38**	-0.20	-0.33	0.98	-0.01	0.03**	-0.06**	0.01	0.01**	0.03**	0.01	-0.01
NLR33671	-1.40*	-6.57**	-0.18	0.60	-0.03**	-0.09**	0.03**	0.01	0.04**	0.05**	0.01	0.01*
MTU1061	5.23**	4.05**	4.63**	3.39**	0.12**	0.04**	0.09**	0.05**	-0.06**	-0.13**	-0.23**	-0.25**
MTU1001	3.18**	4.38**	4.63**	4.48**	0.13**	0.04**	0.07*	0.11**	-0.16**	-0.19**	-0.16**	-0.18**
PUSA1121	-5.74**	-4.83**	-4.25**	-4.74**	-0.11**	-0.08**	-0.12**	-0.07**	0.01*	0.17**	0.20**	0.16**
BPT2231	-2.21*	-1.30*	-6.69**	-8.17**	-0.03**	-0.03**	-0.09**	-0.10**	0.32**	0.13**	0.34**	0.35**
SE (g _i) ±	0.90	0.55	0.73	0.73	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

^{*}Significant at 5 per cent level

^{**}Significant at 1 per cent level

Table. 2Contd....

	Shoot	t potassium c	ontent at M.	r.s	R	oot Length a	t seedling sta	ge	Roo	t Dry weight	at seedling s	tage
Parent	Normal	Late	Normal	T ata	Normal	Late	Normal	Tata maki	Normal	Late	Normal	Tata maki
	kharif	kharif	rabi	Late rabi	kharif	kharif	rabi	Late rabi	kharif	kharif	rabi	Late rabi
NLR33057	-0.22**	-0.19**	-0.20**	-0.19**	-0.53**	0.23	-0.13	-0.02	-0.01	0.01	0.01	0.01
NLR33358	-0.13**	-0.09**	-0.11**	-0.10**	-0.38**	0.11	0.64*	0.89**	-0.01	0.01	0.02**	0.02**
NLR33359	-0.05**	0.01	-0.13**	-0.13**	-0.59**	0.44**	0.50	0.51	-0.01	0.01	0.01	0.01
NLR40024	-0.15**	-0.07**	-0.11**	-0.08**	0.39**	0.62**	0.41	0.27	0.01	0.01	0.001	0.01
NLR3041	-0.15**	-0.10**	-0.07**	-0.08**	0.37**	-0.57**	-0.15	-0.52	0.01	0.01	-0.01	-0.01
NLR33671	-0.06**	0.01	-0.13**	-0.11**	-0.01	-2.21**	-0.68*	-0.68*	0.01	-0.02**	-0.01	-0.01*
MTU1061	0.45**	0.41**	0.51**	0.47**	0.95**	0.77**	1.18**	1.57**	0.01*	0.01*	0.02**	0.01*
MTU1001	0.55**	0.45**	0.56**	0.52**	0.92**	1.36**	0.58*	0.89**	0.01*	0.01**	0.01*	0.01*
PUSA1121	-0.06**	-0.18**	-0.11**	-0.10**	-0.98**	-0.59**	-1.35**	-1.38**	-0.01*	-0.01*	-0.02**	-0.02**
BPT2231	-0.19**	-0.24**	-0.22**	-0.20**	-0.14	-0.16	-1.00**	-1.53**	0.01	-0.01	-0.02**	-0.02**
SE (g _i) ±	0.01	0.01	0.00	0.01	0.12	0.12	0.29	0.33	0.01	0.01	0.01	0.01

^{*}Significant at 5 per cent level

^{**}Significant at 1 per cent level

Table. 2Contd....

Parent		Grain yie	eld plant ⁻¹	
raient	Normal kharif	Late kharif	Normal <i>rabi</i>	Late rabi
NLR33057	-1.26**	-0.06	-1.65**	-1.80**
NLR33358	-2.24**	-0.09	0.41*	0.47
NLR33359	-1.03**	0.28	1.35**	1.60**
NLR40024	-1.27**	0.94**	0.56**	0.42
NLR3041	-0.57**	-0.06	-2.27**	-0.66**
NLR33671	-0.25	-1.53**	-0.39*	-2.17**
MTU1061	3.65**	0.57**	1.41**	1.37**
MTU1001	4.22**	1.89**	4.07**	4.55**
PUSA1121	-2.12**	-1.48**	-1.29**	-2.46**
BPT2231	0.87**	-0.46*	-2.19**	-1.34**
SE (g _i) <u>+</u>	0.14	0.22	0.18	0.24

*Significant at 5 per cent level

^{**}Significant at 1 per cent level

Table. 3 Specific combining ability effects of hybrids for salinity tolerance traits and grain yield in different seasons under saline conditions

		Shoot Length at	seedling stag	e	SI	noot Dry weight	at seedling st	age	Shoot sodium content at M.T.S				
Hybrids	Normal kharif	Late kharif	Normal rabi	Laterabi	Normal kharif	Late kharif	Normal rabi	Laterabi	Normal kharif	Late kharif	Normal rabi	Laterab	
NLR33057 X NLR33358	-4.64	-4.40*	4.47	-4.47	-0.01	-0.09**	0.03	0.03	-0.08**	-0.12**	-0.04	-0.15**	
NLR33057 X NLR33359	-4.03	-5.28**	-1.65	4.72	0.04**	0.01	0.07**	0.06*	0.01	-0.04*	0.01	-0.09**	
NLR33057 X NLR40024	0.99	-5.06**	5.77*	0.98	-0.18**	0.01	-0.02	0.02	0.03	0.10**	0.13**	0.01	
NLR33057 X NLR3041	5.43	7.60**	-4.50	-2.92	0.09**	0.15**	-0.02	-0.06*	0.14**	0.01	0.11**	0.03	
NLR33057 X NLR33671	-9.92**	-6.03**	-13.06**	3.40	0.07**	-0.07*	0.04	-0.02	0.02	0.01	0.06**	0.05**	
NLR33057 X MTU1061	5.45	2.78	6.12*	2.57	0.12**	0.03	-0.05	0.02	-0.25**	-0.19**	-0.10**	-0.17**	
NLR33057 X MTU1001	6.17*	1.82	4.42	4.08	0.01	0.01	0.03	0.23**	-0.06**	-0.04	-0.09**	-0.09*	
NLR33057 X PUSA1121	6.15*	-0.77	4.48	0.84	0.09**	0.01	0.09**	0.01	0.41**	0.24**	0.27**	0.78**	
NLR33057 X BPT2231	1.72	8.00**	-1.93	-1.00	0.09**	0.08**	0.02	-0.01	0.11**	0.36**	0.09**	0.29**	
NLR33358 X NLR33359	-2.75	-11.92**	2.90	-4.87	-0.12**	0.08**	0.17**	0.08**	-0.04*	-0.09**	-0.06**	-0.05*	
NLR33358 X NLR40024	-4.24	6.20**	-4.44	-5.49*	-0.08**	0.01	-0.01	-0.14**	0.41**	0.38**	0.44**	0.51**	
NLR33358 X NLR3041	1.72	7.16**	-5.04*	0.42	0.10**	0.10**	-0.14**	0.05	0.12**	0.09**	0.14**	0.17**	
NLR33358 X NLR33671	4.06	-6.67**	1.95	1.30	-0.14**	0.01	0.04	0.10**	0.17**	0.13**	0.19**	0.14**	
NLR33358 X MTU1061	4.63	1.61	4.97*	2.78	0.01	0.07*	0.01	-0.10**	-0.28**	-0.22**	-0.13**	-0.13*	
NLR33358 X MTU1001	-3.65	-8.63**	-2.28	2.16	0.47**	-0.11**	0.03	0.01	-0.10**	0.04	-0.11**	-0.10*	
NLR33358 X PUSA1121	1.43	0.19	0.33	1.68	-0.06**	-0.09**	0.04	-0.06*	-0.08**	-0.28**	-0.28**	-0.21*	
NLR33358 X BPT2231	-0.89	8.26**	-4.43	4.51	0.12**	0.02	-0.02	0.05*	0.11**	0.37**	0.19**	0.18*	
NLR33359 X NLR40024	7.16*	-5.85**	3.78	5.40*	0.08**	-0.13**	0.03	0.02	-0.11**	-0.15**	-0.11**	-0.14*	
NLR33359 X NLR3041	10.28**	7.47**	1.31	2.30	0.08**	-0.06*	-0.11**	-0.05	0.10**	0.08**	0.15**	0.16*	
NLR33359 X NLR33671	-4.42	-4.76*	-3.12	-2.98	0.01	0.04	-0.12**	0.06*	0.10**	0.05	0.13**	0.13**	
NLR33359 X MTU1061	6.88*	8.02**	4.62	3.37	0.11**	0.01	0.01	-0.03	-0.23**	-0.06*	-0.18**	-0.16*	
NLR33359 X MTU1001	4.17	16.55**	0.44	-0.06	0.10**	0.22**	-0.05*	-0.15**	-0.02**	-0.20**	-0.01*	-0.01	
NLR33359 X PUSA1121	1.05	-4.80*	-1.07	0.05	0.15**	0.09**	-0.03	-0.04	-0.11**	0.51**	-0.27**	-0.23*	

^{*}Significant at 5 per cent level

^{*}Significant at 1 per cent level

	Si	hoot Length a	t seedling sta	ige	Sho	ot Dry weigh	t at seedling s	stage	Sh	oot sodium c	ontent at M.	Γ.S
Hybrids	Normal kharif	Late kharif	Normal rabi	Laterabi	Normal kharif	Late kharif	Normal rabi	Laterabi	Normal kharif	Late kharif	Normal rabi	Laterabi
NLR33359 X BPT2231	5.98	-1.73	-1.36	0.55	0.10**	0.04	0.02	0.10**	0.10**	-0.24**	0.14**	0.25**
NLR40024 X NLR3041	-2.39	6.90**	0.75	3.64	0.14**	0.04	-0.02	0.17**	0.09**	0.36**	0.10**	0.07**
NLR40024 X NLR33671	-0.21	-8.03**	-0.12	-3.12	-0.19**	0.04	-0.05*	-0.11**	0.01	0.01	0.09**	0.11**
NLR40024 X MTU1061	4.65	-0.25	5.10*	3.69	0.40**	-0.04	0.09**	-0.04	-0.32**	-0.13**	-0.12**	-0.12**
NLR40024 X MTU1001	5.33	8.81**	1.88	3.57	0.03	0.16**	0.09**	-0.06*	-0.30**	-0.08**	-0.25**	-0.16**
NLR40024 X PUSA1121	0.19	1.63	-1.01	-0.88	0.07**	-0.01	0.15**	0.01	-0.13**	-0.14**	-0.29**	-0.23**
NLR40024 X BPT2231	0.03	-12.80**	-4.21	-0.51	0.07**	0.03	0.03	0.02	-0.03	-0.27**	0.01	0.02
NLR3041 X NLR33671	-1.16	-9.18**	-2.32	-4.75	0.06**	0.03	-0.03	-0.09**	-0.02	0.27**	0.06*	0.05**
NLR3041 X MTU1061	3.95	-4.90*	5.73*	1.73	0.16**	-0.04	0.20**	0.11**	-0.28**	-0.13**	-0.12**	-0.11**
NLR3041 X MTU1001	1.96	-4.93*	3.58	3.87	0.01	0.12**	0.22**	0.09**	-0.16**	-0.04	-0.08**	-0.07**
NLR3041 X PUSA1121	-4.46	-12.12**	3.86	0.83	-0.17**	-0.05	-0.03	-0.02	-0.13**	-0.25**	-0.28**	-0.27**
NLR3041 X BPT2231	-1.34	-2.05	-1.54	-1.09	0.14**	-0.02	0.18**	0.06*	-0.13**	-0.25**	-0.07**	0.03
NLR33671 X MTU1061	3.03	4.21*	4.67	2.05	0.04**	0.00	0.12**	0.01	-0.34**	0.31**	-0.16**	-0.18**
NLR33671 X MTU1001	4.98	7.44**	2.55	2.10	0.01	-0.05	0.08**	0.07**	-0.18**	-0.21**	-0.12**	-0.13**
NLR33671 X PUSA1121	5.49	-2.45	1.23	1.04	0.14**	-0.12**	0.01	0.07**	-0.03	-0.46**	-0.19**	-0.11**
NLR33671 X BPT2231	11.63**	4.82*	1.38	-1.73	0.10**	0.08**	0.11**	0.01	0.05**	-0.14**	0.13**	0.16**
MTU1061 X MTU1001	8.07*	-0.78	4.75	8.97**	0.48**	0.07*	0.48**	0.53**	-0.02	-0.15**	0.18**	0.20**
MTU1061 X PUSA1121	-0.61	6.13**	-4.21	-1.07	-0.21**	0.18**	-0.17**	0.00	-0.08**	-0.25**	-0.14**	-0.08**
MTU1061 X BPT2231	-3.70	-5.76**	4.30	-2.86	-0.10**	0.03	0.06*	-0.05*	-0.53**	-0.09**	-0.39**	-0.42**
MTU1001 X PUSA1121	8.11**	10.60**	4.50	5.94*	0.11**	-0.05	-0.10**	-0.01	0.04*	-0.24**	-0.19**	-0.14**
MTU1001 X BPT2231	9.20**	-6.03**	8.19**	-1.52	-0.03	0.12**	-0.04	-0.05	-0.35**	-0.05	-0.35**	-0.37**
PUSA1121 X BPT2231	-3.36	4.68*	7.99**	2.77	0.16**	0.03	0.04	0.13**	0.31**	-0.49**	0.13**	0.18**
SE (Sij) <u>+</u>	3.01	1.85	2.46	2.46	0.02	0.03	0.03	0.03	0.02	0.03	0.02	0.02

^{*}Significant at 5 per cent level

^{**}Significant at 1 per cent level

	Sho	ot potassium	content at M	.T.S	R	oot Length a	t seedling stag	ge	Roc	ot Dry weight	at seedling st	age
Hybrids	Normal	Late	Normal	Late	Normal	Late	Normal	Late	Normal	Late	Normal	Lat
	kharif	kharif	rabi	rabi	kharif	kharif	rabi	rabi	kharif	kharif	rabi	rab
NLR33057 X NLR33358	0.09**	0.05	-0.01	-0.03	-0.48	-0.99*	-0.37	-1.02	0.01	-0.01	0.01	0.0
NLR33057 X NLR33359	-0.06**	-0.11**	-0.02	-0.02	0.59	-2.41**	1.06	1.71	0.01	-0.01	0.01	0.0
NLR33057 X NLR40024	-0.05*	-0.12**	-0.18**	-0.19**	0.05	-1.33**	0.12	-0.31	0.01	-0.02	-0.05**	0.0
NLR33057 X NLR3041	-0.01	-0.05	-0.06**	-0.04	1.01*	2.29**	-0.48	-0.82	0.01	0.03	0.04*	-0.0
NLR33057 X NLR33671	-0.12**	-0.19**	0.12**	0.12**	-3.02**	-1.26**	-0.94	-0.59	-0.02	0.02	0.01	-0.0
NLR33057 X MTU1061	0.07**	0.09**	-0.05**	-0.06*	0.57	0.67	1.05	0.71	0.01	0.01	0.02	0.0
NLR33057 X MTU1001	0.23**	0.34**	0.16**	0.16**	0.54	-0.06	1.44	1.53	0.01	-0.02	0.04*	0.0
NLR33057 X PUSA1121	-0.22**	-0.07*	0.17**	0.18**	-1.27**	-1.23**	-1.33	0.92	0.01	-0.02	-0.04*	0.0
NLR33057 X BPT2231	-0.06**	0.05	-0.10**	-0.06*	0.04	1.57**	-0.55	-0.69	0.01	0.02	-0.01	-0.0
NLR33358 X NLR33359	-0.11**	-0.12**	-0.17**	-0.16**	-1.47**	-1.39**	-0.26	0.72	-0.01	-0.02	0.01	0.0
NLR33358 X NLR40024	-0.24**	-0.29**	0.32**	0.38**	-0.77	-2.12**	1.74	-1.07	0.01	-0.03	0.01	-0.0
NLR33358 X NLR3041	0.02	-0.04	-0.14**	-0.12**	0.38	2.24**	-1.11	2.03	0.01	0.02	-0.01	0.0
NLR33358 X NLR33671	-0.22**	-0.27**	-0.22**	-0.24**	-0.18	-0.60	0.35	0.04	0.01	-0.01	0.03	0.0
NLR33358 X MTU1061	-0.04	0.03	-0.14**	-0.10**	0.95*	0.61	1.27	0.92	0.01	-0.01	0.01	0.0
NLR33358 X MTU1001	0.04*	0.15**	-0.03	0.01	-0.56	1.15**	0.77	1.03	0.01	0.02	0.01	0.0
NLR33358 X PUSA1121	-0.10**	-0.01	-0.17*	-0.18**	0.40	-0.90*	0.33	0.04	-0.01	-0.01	0.04*	0.0
NLR33358 X BPT2231	-0.19**	-0.11**	-0.06**	-0.10**	1.87**	-0.39	-0.58	-0.17	-0.01	0.01	-0.01	-0.0
NLR33359 X NLR40024	-0.15**	-0.22**	-0.27**	-0.26**	-0.68	-2.74**	0.02	0.46	0.01	-0.05*	0.02	-0.0
NLR33359 X NLR3041	-0.24**	-0.32**	-0.29**	-0.24**	1.43**	0.80	-0.86	-0.12	0.01	0.01	0.01	0.0
NLR33359 X NLR33671	-0.29**	-0.26**	-0.07**	-0.07*	0.19	-1.50**	1.17	1.51	0.01	-0.02	-0.01	0.0
NLR33359 X MTU1061	0.61**	0.61**	0.17**	0.16**	1.71**	0.56	0.82	0.90	-0.03*	0.01	0.01	0.0
NLR33359 X MTU1001	0.29**	0.61**	0.25**	0.19**	1.23**	2.85**	0.99	0.99	0.01	0.03	0.01	0.0
NLR33359 X PUSA1121	-0.23**	-0.12**	-0.15**	-0.14**	-2.79**	-0.65	0.65	-0.35	-0.02	-0.03	0.02	-0.0

Table. 3 Contd....

	3	Shoot potassium o	content at M.T.S			Root Length at	seedling stage	9	R	Root Dry weight	at seedling sta	ige
Hybrids	Normal kharif	Late kharif	Normal <i>rabi</i>	Late	Normal	Late kharif	Normal	Late	Normal	Late kharif	Normal	Late
	1401 mai knartj	Late khurij	Norman rabi	rabi	kharif	Late knurtj	rabi	rabi	kharif	Late knurtj	rabi	rabi
NLR33359 X BPT2231	-0.22**	-0.19**	-0.09**	-0.08**	-2.85**	2.88**	-0.96	-2.03	-0.01	0.05*	-0.01	-0.04
NLR40024 X NLR3041	-0.15**	-0.19**	-0.29**	-0.26**	-1.46**	2.82**	-1.15	-0.30	-0.01	0.04*	-0.04*	0.01
NLR40024 X NLR33671	-0.24**	-0.30**	-0.22**	-0.24**	-1.20**	-0.50	-1.96*	-1.88	-0.01	-0.01	0.01	-0.04
NLR40024 X MTU1061	0.12**	0.41**	0.26**	0.27**	1.87**	0.43	1.49	2.23	0.03	0.03	0.02	0.02
NLR40024 X MTU1001	0.14**	0.25**	0.04*	0.07*	1.32**	3.23**	1.88	2.12	0.02	0.04*	0.02	0.01
NLR40024 X PUSA1121	-0.10**	0.01	-0.14**	-0.16**	-0.42	-0.44	0.19	0.80	-0.02	0.01	0.02	0.03
NLR40024 X BPT2231	-0.14**	-0.09**	-0.12**	-0.15**	-1.05*	-2.25**	-0.71	0.27	-0.02	-0.02	0.01	0.01
NLR3041 X NLR33671	-0.03	-0.09**	-0.19**	-0.17**	-1.21**	-0.38	-2.04*	-2.01	-0.02	0.01	-0.04*	-0.02
NLR3041 X MTU1061	0.31**	0.34**	0.49**	0.24**	2.81**	-1.87**	1.07	1.09	0.04*	-0.04*	0.01	0.02
NLR3041 X MTU1001	0.31*	0.48**	0.25**	0.32**	1.57**	-1.21**	2.57*	2.89*	0.01	-0.03	0.04*	0.03
NLR3041 X PUSA1121	-0.08**	0.11**	-0.10**	-0.08**	-1.72**	-2.18**	-1.55	-1.33	-0.02	-0.01	-0.01	-0.02
NLR3041 X BPT2231	-0.16**	-0.11**	-0.14**	-0.12**	-0.83*	-1.13**	0.52	-1.90	0.01	-0.02	-0.02	-0.01
NLR33671 X MTU1061	0.59**	0.62**	0.54**	0.54**	-1.11**	0.10	1.10	1.37	-0.01	0.01	0.01	0.02
NLR33671 X MTU1001	0.22**	0.36**	0.23**	0.24**	-0.89*	-0.84*	0.44	0.73	0.01	-0.02	0.01	0.01
NLR33671 X PUSA1121	-0.13**	0.03	-0.04*	0.01	-0.26	-0.56	-1.91	-0.80	-0.01	0.01	-0.03	-0.02
NLR33671 X BPT2231	-0.20**	-0.14**	-0.07**	-0.06*	2.54**	0.85*	0.49	-1.26	0.03	0.01	-0.01	0.01
MTU1061 X MTU1001	0.01	0.16**	0.78**	0.44**	2.19**	2.91**	1.79	1.10	0.02	0.04*	0.01	0.01
MTU1061 X PUSA1121	0.39**	-0.38**	0.14**	0.17**	-1.14**	1.57**	-1.68	-1.93	-0.02	0.03	0.01	-0.02
MTU1061 X BPT2231	-0.11**	-0.15**	-0.06**	0.04	-2.90**	-2.89**	-0.64	0.56	-0.02	-0.01	-0.02	-0.01
MTU1001 X PUSA1121	0.30**	-0.43**	0.15**	0.21**	0.20	-3.66**	-2.69**	-3.51**	0.01	-0.03	-0.04**	-0.04
MTU1001 X BPT2231	0.34**	-0.45**	-0.03*	0.01	-0.36	-2.69**	-1.09	-0.03	-0.01	0.01	-0.02	0.01
PUSA1121 X BPT2231	-0.18**	0.05	-0.26**	-0.27**	-1.39**	-1.49**	-0.35	0.96	-0.01	0.01	0.01	0.01
SE (Sij) <u>+</u>	0.02	0.03	0.02	0.03	0.41	0.42	0.96	1.11	0.02	0.02	0.02	0.02

			1

	Grain yield	plant ⁻¹		
Hybrids	Normal	Late	Normal	Late
	kharif	kharif	rabi	rabi
NLR33057 X NLR33358	0.05	-0.15	-1.12	-0.09
NLR33057 X NLR33359	-0.32	-1.81*	6.84**	-3.48**
NLR33057 X NLR40024	-1.80**	-1.88*	-2.18**	-0.85
NLR33057 X NLR3041	1.02*	5.52**	-0.94	0.32
NLR33057 X NLR33671	-1.21*	-1.51*	2.68**	0.25
NLR33057 X MTU1061	3.99**	1.99**	-1.53*	0.07
NLR33057 X MTU1001	1.75**	-4.16**	-1.10	-0.04
NLR33057 X PUSA1121	-0.82	0.03	-1.04	0.99
NLR33057 X BPT2231	-0.46	1.22	-0.61	1.16
NLR33358 X NLR33359	0.07	1.22	-3.54**	-2.43**
NLR33358 X NLR40024	0.48	-0.86	-5.05**	-3.75**
NLR33358 X NLR3041	0.49	2.92**	-2.41**	-0.46
NLR33358 X NLR33671	-0.22	0.03	8.01**	-2.17*
NLR33358 X MTU1061	0.77	-0.07	3.11**	4.44**
NLR33358 X MTU1001	-1.69**	-1.79*	11.64**	12.34**
NLR33358 X PUSA1121	0.74	-0.92	1.24	-1.90*
NLR33358 X BPT2231	-0.85	0.18	-2.76**	0.92
NLR33359 X NLR40024	-1.22*	-4.19**	4.23**	-0.69
NLR33359 X NLR3041	-0.75	-0.51	-3.31**	6.53**
NLR33359 X NLR33671	-2.03**	-1.10	-5.35**	-3.05**
NLR33359 X MTU1061	2.16**	-1.01	1.96**	3.11**
NLR33359 X MTU1001	4.50**	8.95**	13.93**	15.99**
NLR33359 X PUSA1121	0.63	1.60*	-0.01	-1.33

*Significant at 5 per cent level

**Significant at 1 per cent level

Hybrids	Manna			
	Normal	Late	Normal	Late
	kharif	kharif	rabi	rabi
NLR33359 X BPT2231	-1.76**	-0.50	-1.89**	-3.80**
NLR40024 X NLR3041	-0.77	0.85	-2.53**	-0.17
NLR40024 X NLR33671	-1.20*	-0.86	5.15**	1.47
NLR40024 X MTU1061	1.30**	2.00**	1.55*	1.80*
NLR40024 X MTU1001	4.23**	7.71**	4.09**	3.74**
NLR40024 X PUSA1121	1.05*	-0.15	2.05**	3.81**
NLR40024 X BPT2231	-0.86	-0.56	-1.11	-2.70**
NLR3041 X NLR33671	-0.99*	-0.90	3.33**	0.40
NLR3041 X MTU1061	3.70**	-1.40	-0.72	-1.48
NLR3041 X MTU1001	1.65**	-0.32	0.72	-2.21**
NLR3041 X PUSA1121	0.19	-3.01**	4.33**	-0.14
NLR3041 X BPT2231	-1.53**	-1.76*	0.58	0.59
NLR33671 X MTU1061	0.51	0.33	-3.50**	-0.49
NLR33671 X MTU1001	0.70	-1.55*	-3.73**	-2.77**
NLR33671 X PUSA1121	-0.64	-1.27	1.03	-0.27
NLR33671 X BPT2231	-0.73	1.23	-1.70**	1.05
MTU1061 X MTU1001	3.96**	-0.49	0.54	-1.34
MTU1061 X PUSA1121	-0.84	1.14	0.43	0.86
MTU1061 X BPT2231	0.76	-0.50	5.41**	-1.37
MTU1001 X PUSA1121	-2.31**	-2.89**	-5.53**	-5.76**
MTU1001 X BPT2231	5.09**	1.81*	-2.36**	0.70
PUSA1121 X BPT2231	0.33	-0.18	0.43	0.57
SE (Sij) <u>+</u>	0.47	0.73	0.62	0.82