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ABSTRACT 

Topology optimization mainly comprises of a mathematical approach that optimizes the layout within a given design constraints, 

for a given set of loads and boundary condition such that the performance matches with the prescribed set of performance targets. 

Topological optimization solve the problem of distributing a given amount of material in a design domain subjected to load and 

supports conditions, such that the compliance of the structure is minimized while the stiffness of structure is maximized. In 

topology optimization several approaches based on a density-like function were proposed, but resulted in optimization models 

with rather large number of design variable. An attractive alternative is optimal criteria method. This paper represents the optimal 

criteria method for topological optimization of isotropic material under different loads and boundary conditions with the objective 

to reduce mass of an existing material and study the different shape obtain by varying the mesh density of a structure. This paper 

work represents topological optimization for static loading using finite element solver ANSYS.  APDL (ANSYS Parametric 

Design Language) has been employed for utilizing the topological optimization capabilities of commonly used finite element 

solver ANSYS. 8 node 82 elements are used to model and mesh the isotropic material in ANSYS. 

Keywords-Topology Optimization, Pseudo-densities, Compliance minimization, Optimality Criterion, SIMP. 

 

1. INTRODUCTION 

The objective of the optimization problem is often some sort 

of maximization or minimization, for example minimization 

of compliance or maximization of stiffness. Mathematically 

the general optimization problem is most often formulated as 

minimization of the function subject to constraints, this can be 

expressed as  

           x1 

           x2 

        Find x                    .          which minimize f(x) 

           xn  ……………………...(1)  

                                       gi(x)-0, i꞊1, 2, …., m                                        

         subject to 

          hi(x)꞊0, i꞊ 1, 2, …,n ……………(2) 

Where x is the vector of design parameters and f(x) is the cost 

function. The functions gi(x) and hj(x) are called the inequality 

constraint function and the equality constraint function 

respectively and they define the constraints of the problem. 
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In a given design domain the purpose is to find the optimum 

distribution of material and voids. To solve this problem it is 

discretized by using the finite element method (FEM) and 

dividing the design domain into discrete elements (mesh). The 

resulting problem is then solved using optimization methods 

to find which elements that are material and which are not. 

This result in a so called 0-1 problem, the elements either 

exists or not, which is an integer problem with two different 

states for each element. 

In topological optimization the design domain is created by 

assembling a large number of basic elements or building 

blocks. By beginning with a set of building block representing 

the maximum allowable region (region in space which the 

structure may occupy) each block is allowed to either exist or 

vanish from the design domain, a unique design is evolved. 

For example in the topology optimization of a cantilever plate, 

the plate is discretized into small rectangular elements 

(building blocks), where each element is controlled by design 

variables which can vary continuously between 0 and 1. When 

a particular design variable has a value of 0, it is considered to 

be a hole, likewise, when a design variable has a value of 1, it 

is considered to be fully material. The elements with 

intermediate values are considered materials of intermediate 

densities.  

2. THE SIMP METHOD 

The SIMP stands for Solid Isotropic Material with 

Penalization method. This is the penalization scheme or the 

power law approach, which is the basis for evolution of a 0-1 

topology in gradient based methods. The power-law approach 

is physically permissible as long as simple conditions on the 

power are satisfied (e.g. p>3 for Poisson’s ratio equal to 1/3). 

The common choice of design parameterization is to take xi as 

the design variable by convention, xi = 1 at a point signifies a 

material region while xi = 0 represents void. Each finite 

element (formed due to meshing in ANSYS) is given an 

additional property of pseudo-density, xi where 0≤xi≥1 , which 

alters the stiffness properties of the material.  

o

i=
ρ
ρ

ix ……………..………………………..(3) 

Where,                                                                              

  ρi= Density of the ith element                                                        

ρ0= Density of the base material                                                     

xi= Pseudo-density of the ith element  

This Pseudo-density of each finite element serves as the 

design variables for the topology optimization problem and 

the intermediate values are penalized according to the 

following scheme: 

oi EE p
ix= ……………………………….(4) 

Here Ei is the material young modulus of the ith element while 

E0 denotes the young modulus of the solid phase material. The 

stiffness of intermediate densities is penalized through the 

power law relation, so they are not favored. As a result, the 

final design consists primarily of solid and void regions. 

K=K(xi) =ΣEKi=Σxi
pE0Ki………………….. (5) 

3. MATERIAL AND METHOD 

3.1     Optimal Criteria Approach 

In topology optimization several approaches based on a 

density-like function were proposed, but resulted in 

optimization models with rather large number of design 

variables. Non-linear mathematic programming for such 

problems, on the other hand, is costly and time consuming. An 

attractive alternative is the optimality criteria method, which 

solve the optimality conditions directly. Two types of 

problems exist in the topological optimization. One is to 

minimize a performance function, subject to equilibrium 

equations and the constraint on the material resource. The 

other is to minimize the material resource, subject to 

equilibrium equations and performance functions. 

The design region is meshed into a fixed grid of n finite 

elements. All elements carry densities that constitute the 

design variables. The objective is to find an optimal material 

distribution in the design domain that subjected to some given 

constraints, leading to minimizing a specified objective 

function. The standard approach is to let the design variables 

represent the relative densities of the material in related 

elements. To avoid the singularity of the matrix, the density 

variables are given a lower limit. Topology optimization 

problem is to minimize the compliance of the structure while 
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it is subjected to a limited amount of material in the design 

domain can be written as  

    Minimize : C(X) ={F}T{U} 

               X   =(x1,x2,…..xn)
T 

                                  VTx≤V* 

            Subject to:     0<xmin≤xi≤1 

                                  {F} =[K]{U}     …………... (6) 

where X is the design variable, C is the compliance of the 

structure, VT  is a vector containing the volume of the 

elements, V* is the volume constraint, K is the stiffness 

matrix. 

Iterative optimization techniques For discrete topology 

optimization problem common to use to solve this problem, 

e.g. optimality criteria (OC) method. The Lagrangian function 

for the optimization problem is defined as: 

)1(+)(+])[]][([

+)(+]][[[U]=)(

3min21

*T

−∑−∑−
−∑ΛΓ

ii

T
i

xxxFUK

VVUKx

λλλ
 

………………(7) 

Where Λ, λ1, λ2 and λ3 are Lagrange multipliers for the various 

constraints. The optimality condition is given by:  

idx

dΓ
……………………………..(8)      

Now, Compliance  

C={U} T[K]{U} …………….……………(9) 

Differentiating Eq.(9) w. r. t. xi, the optimality condition can 

be written as:  

1=
V

dx
dC

-
=

i

i

ΛiB ……………………(10) 

Based on these expressions, the design variables are updated 

as follows: 

xnew= 

    max(xmin, xi−m) 

    if   xi 
η
iB  ≤ max(xmin, xi−m) , 

    xi
η
iB  

   if   max(xmin, xi −m)<xi
η
iB < min(1, xi + m) 

   min(1, xi + m)   

 if min(1, xi + m) ≤ xi
η
iB                   ...............................(11) 

Where, m is called the move limit and represents the 

maximum allowable change in xi in a single OC iteration. 

Also,  is a numerical damping coefficient, and is usually 

taken to be 1/2. The Lagrange multiplier for the volume 

constraint ᴧ is determined at OC iteration using a bisection 

algorithm xi is the value of the density variable at each 

iteration step ui is the displacement field at each iteration step 

determined from the equilibrium equations. 

3.2 Numerical Examples with Boundary Conditions 

Three numerical examples are given to demonstrate the 

validity and efficiency of the proposed approach. The 

specimens are taken from the work of Yiqiang Wang, Zhan 

Kang, Qizhi He [2013, 2014]. All the models are under plane 

state of stress. In first model the Young’s modulus is E0 =100 

while E0 = 1000.0 is taken in 2nd and 3rd. Poisson’s ratio is µ= 

0.3 is taken in all the models. 

Table- I 

1st model Eo꞊100 µ= 0.3 

2nd model Eo꞊1000 µ= 0.3 

3rd model Eo꞊1000 µ= 0.3 

Table-1: Material Properties used 

MODEL-1 Topology optimization of a cantilever beam with a 

fixed circular hole 

The first example focuses on the cantilever beam with a fixed 

hole as shown in fig-1. The center of the circle locates at 

(17.5, 15), with a radius Rhole = 7. 

 

Fig-1: cantilever beam with a fixed circular hole 
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MODEL-2 Topology optimization of a bracket with two holes 

To illustrate the effectiveness of the proposed optimization 

approach more complex geometries, the second example 

considers the topological design of a bracket structure in a 

design domain with two same-sized circular holes, as shown 

in fig-2. The left circular hole is fixed while a uniformly 

distributed line forces t = 1/pi*r is applied to the left-half 

boundary of the right hole. The volume fraction is given by fv 

= 0.35. 

 

Fig-2: bracket with two holes 

MODEL-3 Topology optimization with a half-ring shaped 

design domain 

The final example refers to the optimal topology design within 

a half-ring shaped design domain, whose geometrical 

dimensions and boundary conditions are schematically plotted 

in fig-3. The volume fraction is set to be fv = 0.5. 

 

Fig-3: half-ring shaped design domain 

4. RESULTS AND DISCUSSION 

This section presents the detailed results of FE analysis and 

optimization of the above structures. Final compliance and 

optimal shape of the models obtained with the help of gradient 

based ANSYS based Optimality Criterion have been 

compared with an adaptive refinement approach in the work of 

Yiqiang Wang, Zhan Kang, Qizhi He [2013, 2014]. 

MODEL 1: In Topology optimization of a cantilever beam 

with a fixed circular hole meshing is done with 8 nodes 82 

triangular element by giving element edge length one for each 

line. Table-II shows the final compliance obtained in the case 

of ANSYS based OC and adaptive refinement approach.  

Table- II 

Method ANSYS based 

OC 

adaptive 

refinement 

approach 

Compliance 0.44176 0.471 

Iteration 34 40 

Percentage difference in 

compliance 

2.924 

Table 2: Comparison for model 1 

 

 

(a) 

 

(b) 

Fig-4: Optimal shapes obtained by (a) ANSYS based OC and 

(b) adaptive refinement approach 

 

Fig-5: Graph between compliance and iteration for model 1 



 

INTERNATIONAL JOURNAL FOR RESEARCH IN EMERGING SCIENCE AND TECHNOLOGY, VOLUME-2, ISSUE-2, FEBRUARY-2015                                  E-ISSN: 2349-7610 

VOLUME-2, ISSUE-2, FEBRUARY-2015                                COPYRIGHT © 2015 IJREST, ALL RIGHT RESERVED                                                                                                 45 

MODEL 2: In Topology optimization of a bracket with two 

holes meshing is done with 8 nodes 82 triangular element by 

giving element edge length 0.2 for each line and total number 

element is 1996. Table III shows the final compliance 

obtained in the case of ANSYS based OC and adaptive 

refinement approach.  

Table- III 

Method ANSYS based 

OC 

adaptive 

refinement 

approach 

Compliance 0.0363 0.045 

Iteration 41 73 

Percentage difference in 

compliance 

23.97 

Table-3: Comparison for model 2 

 

 

(a) 

 

(b) 

Fig-6: Optimal shapes obtained by (a) ANSYS based OC and 

(b) adaptive refinement approach 

 

 

Fig-7: Graph between compliance and iteration for model 2 

MODEL 3: In Topology optimization with a half-ring shaped 

design domain meshing is done with 8 nodes 82 triangular 

element by giving element edge length 0.6 for each line and 

total number element is 1996. Table IV shows the final 

compliance obtained in the case of ANSYS based OC and 

adaptive refinement approach.  

Table- IV 

Method ANSYS based 

OC 

adaptive 

refinement 

approach 

Compliance 0.05379 0.057 

Iteration 33 64 

Percentage difference in 

compliance 

9.063 

Table-4: Comparison for model 4 

 

 

(a) 
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(b) 

Fig-8: Optimal shapes obtained by (a) ANSYS based OC and 

(b) adaptive refinement approach 

 

 

Fig-9: Graph between compliance and iteration for model 3 

5. CONCLUSION 

The modeling and finite element analysis has been presented 

for three different models. Topology optimization was 

performed and according to the results, it can be concluded 

that the results of ANSYS based Optimality Criterion which is 

a gradient based method are compared with those obtained by 

adaptive refinement approach. Compliance values obtained by 

ANSYS based Optimality Criterion are lower by 2.94%-

23.97% than adaptive refinement approach in the work of 

Yiqiang Wang, Zhan Kang, Qizhi He [2013, 2014]. On 

comparison it can also be conclude that number of iteration by 

ANSYS based Optimality Criterion are less than the adaptive 

refinement approach. Topology optimization being the 

primary stage of structural optimization, the above plane stress 

structures can be considered for shape optimization and sizing 

optimization. In shape optimization, the design variables can 

be considered to be the coordinates of the nodes and in sizing 

optimization, any physical dimensions. The objective variable 

in both cases can be the volume of the structure. Material 

optimization approach will be considered for future research. 
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