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ABSTRACT

Topology optimization mainly comprises of a math&osd approach that optimizes the layout withinigeg design constraints,
for a given set of loads and boundary conditiorhgthat the performance matches with the prescriie¢df performance targets.
Topological optimization solve the problem of distiting a given amount of material in a design donsabjected to load and
supports conditions, such that the compliance ef dtructure is minimized while the stiffness ofusture is maximized. In
topology optimization several approaches based dersity-like function were proposed, but resulitedptimization models
with rather large number of design variable. Amaative alternative is optimal criteria method. §paper represents the optimal
criteria method for topological optimization of iempic material under different loads and boundargditions with the objective
to reduce mass of an existing material and studydifierent shape obtain by varying the mesh dgmditn structure. This paper
work represents topological optimization for stdtb@ading using finite element solver ANSYS. APDANSYS Parametric
Design Language) has been employed for utilizirgy thpological optimization capabilities of commonlged finite element
solver ANSYS. 8 node 82 elements are used to martemesh the isotropic material in ANSYS.

K eywords-Topology Optimization, Pseudo-densities, Compleantgnimization, Optimality Criterion, SIMP.

1. INTRODUCTION X 1)
The objective of the optimization problem is oftsmme sort gi(x)-61i 2, ... m
of maximization or minimization, for example miniration .
subject to
of compliance or maximization of stiffnesblathematically
the general optimization problem is most often folated as hi(x¥0, F1, 2, ...,n ....ooieeeniis (2)

minimization of the function subject to constrajritss can be ) ) )
Where x is the vector of design parameters andig(i)e cost

expressed as ) ) ) _
function. The functionsifx) and f(x) are called the inequality
X constraint function and the equality constraint ction

respectively and they define the constraints ofpttodolem.

Find x . whigfinimize f(x)
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In a given design domain the purpose is to finddhgmum
distribution of material and voids. To solve thimiplem it is
discretized by using the finite element method (FEAd
dividing the design domain into discrete elementiegh). The
resulting problem is then solved using optimizatmethods
to find which elements that are material and whach not.
This result in a so called 0-1 problem, the elemegither
exists or not, which is an integer problem with tdifferent

states for each element.

In topological optimization the design domain igated by
assembling a large number of basic elements ordingil
blocks. By beginning with a set of building bloapresenting
the maximum allowable region (region in space whikh
structure may occupy) each block is allowed toegitxist or
vanish from the design domain, a unique designvaved.
For example in the topology optimization of a clawver plate,
the plate is discretized into small rectangular melets
(building blocks), where each element is controlgddesign
variables which can vary continuously between 0 and/hen
a particular design variable has a value of G5 ¢tdnsidered to
be a hole, likewise, when a design variable haalaevof 1, it
is considered to be fully material. The elementsthwi
intermediate values are considered materials efrimediate

densities.

2. THESIMPMETHOD
The SIMP stands for Solid

Penalization method. This is the penalization sehem the

Isotropic Material

power law approach, which is the basis for evohutid a 0-1
topology in gradient based methods. The power-lppr@ach
is physically permissible as long as simple cooddion the
power are satisfied (e.g. p>3 for Poisson’s ratjoat to 1/3)
The common choice of design parameterization takex as
the design variable by convention,= 1 at a point signifies a

material region whilex;, =

element (formed due to meshing in ANSYS) is givan a

additional property of pseudo-densikywhere @&x>1 , which

alters the stiffness properties of the material.

Where,
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pi= Density of the'f element
po= Density of the base material

x= Pseudo-density of th8 element

This Pseudo-density of each finite element servesthe
design variables for the topology optimization gemb and
the intermediate values are penalized accordingth®

following scheme:

HereE; is the material young modulus of tiedlement while
E® denotes the young modulus of the solid phase iaht€he
stiffness of intermediate densities is penalizetbugh the
power law relation, so they are not favored. Assult, the

final design consists primarily of solid and voahions.
K=K(X)) =2EK=2XPE K ..o

3. MATERIAL AND METHOD

3.1 Optimal Criteria Approach

In topology optimization several approaches based ao
density-like function were proposed, but resulted

optimization models with rather large number of iges
variables. Non-linear mathematic programming forchsu
problems, on the other hand, is costly and timesaonng. An

attractive alternative is the optimality criterizethod, which
solve the optimality conditions directly. Two typesf

problems exist in the topological optimization. Oise to

minimize a performance function, subject to equilim

equations and the constraint on the material resoufhe
other is to minimize the material resource, subjéct

equilibrium equations and performance functions.

The design region is meshed into a fixed gridnofinite
elements. All elements carry densities that caunstitthe
design variables. The objective is to find an optimaterial
distribution in the design domain that subjecteddme given
constraints, leading to minimizing a specified alijee
function. The standard approach is to let the desayiables
represent the relative densities of the materialrétated
elements. To avoid the singularity of the matrhe tdensity
variables are given a lower limit. Topology optiation

problem is to minimize the compliance of the stuuetwhile
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it is subjected to a limited amount of materialtire design

domain can be written as
Minimize :C(X) ={F} {U}

X =04, % %'

TVSV*

Subject ty  Ofpx<l

{F} =KV}

where X is the design variable, C is the compliantd¢he
structure, V is a vector containing the volume of the
elements, V* is the volume constraint, K is theffistiss

matrix.

Iterative optimization techniques For discrete topgy
optimization problem common to use to solve thisbm,
e.g. optimality criteria (OC) method. The Lagramgfanction

for the optimization problem is defined as:

F(x)=[UI"[KIUI+ AV -V +
A (KIUT=[F]) + XA, (X = %) + 2 A3(X —1)

WhereA, 1, A, and); are Lagrange multipliers for the various

constraints. The optimality condition is given by:

dr
T T TT T TP 8
dx 8
Now, Compliance
C={U} TKHU} oo 9

Differentiating Eq.(9) w. r..tx, the optimality condition can

be written as:

Based on these expressions, the design variatdegpaiated

as follows:

new_
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7 max(¥in %—m)

if x Bl'7 < max(in %—M) ,
x B

it max(gin, % —M)<x; B” < min(1, x + m)

\ min(1, x+ m)

if min(1, x + m) < x B
Where, m is called the move limit and represents the
maximum allowable change ix in a single OC iteration.

Also, 7 is a numerical damping coefficient, and is usually
taken to be 1/2. The Lagrange multiplier for thelumee

constraints is determined at OC iteration using a bisection
algorithm x is the value of the density variable at each
iteration stepy; is the displacement field at each iteration step

determined from the equilibrium equations.

3.2 Numerical Exampleswith Boundary Conditions
Three numerical examples are given to demonstrage t
validity and efficiency of the proposed approachheT
specimens are taken from the work¥ifjiang Wang, Zhan
Kang, Qizhi He [2013, 2014]. All the models are under plane
state of stress. In first model the Young's moduisug0 =100
while EO = 1000.0 is taken if'®and 3. Poisson’s ratio is p=
0.3 is taken in all the models.

Table- |
15 model Eel100 pu=0.3
2"° model E®1000 p=0.3
3% model Ee1000 p=0.3

Table-1: Material Properties used

MODEL-1 Topology optimization of a cantilever beam with a
fixed circularhole

The first example focuses on the cantilever beath aifixed

hole as shown in fig-1. The center of the circleakes at

(17.5, 15), with a radiusge = 7.

Fig-1: cantilever beam with a fixed circulzole
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M ODEL -2 Topology optimization of a bracket with two holes MODEL 1: In Topology optimization of a cantilever beam

with a fixed circularhole meshing is done with 8 nodes 82

To illustrate the effectiveness of the proposednapghtion ) L.
prop 3 triangular element by giving element edge lengté for each

approach more complex geometries, the second eramp) . . . .
PP P ¢ p|ne. Table-1l shows the final compliance obtained in tiase

considers the topological design of a bracket sirecin a
polog g of ANSYS based OC and adaptive refinement approach.

design domain with two same-sized circular holesskown

in fig-2. The left circular hole is fixed while aniformly Table- 11
distributed line forces t = 1/pi*r is applied toetHeft-half Method ANSY S based adaptive
boundary of the right hole. The volume fractiomigen by fv ocC refinement
= 0.35. approach
Compliance 0.44176 0.471
- 30 - Iteration 34 40
e o 3 Percentage difference ir 2.924
[ & - \“-ﬁ compliance
, .

01

Table 2: Comparison for model 1

Fig-2: bracket with two holes

The final example refers to the optimal topologgide within

H M T T 1 b
MODEL -3 Topology optimization with a half-ring shaped ESESSSEaE
PATAAN WA o B S S
Sy e e
: : PR R R S
design domain BT T v S L S e
vty oo Ay g I s s
v vt gy U RS
SAAA AT g
TAVAY Bk
REs,
Cel

AVAVAV#VAVAVAV

s
sy
i

a half-ring shaped design domain, whose geometrical

dimensions and boundary conditions are schematipéitted

in fig-3. The volume fraction is set to be fv = 0.5 @

(b)
Fig-4: Optimal shapes obtained by (a) ANSYS bas€da@d

Fig-3: half-ring shaped design domain _ ]
(b) adaptive refinement approach

4. RESULTSAND DISCUSSION 1.4

This section presents the detailed results of Falyais and

optimization of the above structures. Final compia and % 0.8
optimal shape of the models obtained with the bélgradient 22'2 i
based ANSYS based Optimality Criterion have been 02 4

Q

1 3 5 7 9 111315171921232527293133

compared with an adaptive refinement approachémitbrk of
Yigiang Wang, Zhan Kang, Qizhi He [2013, 2014].

Mo. of iteration

Fig-5: Graph between compliance and iteration fodet 1
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MODEL 2: In Topology optimization of a bracket with two 0.14
holes meshing is done with 8 nodes 82 triangulameht by
0.12
giving element edge length 0.2 for each line andl taumber
element is 1996.Table Il shows the final compliance Y 0.1
obtained in the case of ANSYS based OC and adaptive 53,08
o
refinement approach. @,06
o
Table- 111 0.04
M ethod ANSY S based adaptive 0.02 -
ocC refinement 0
approach 1 4 7 10 13 16 19 22 25 28 31 34 37 40
Compliance 0.0363 0.045 No. of iteration
Iteration 41 73
Percentage difference in 23.97 Fig-7: Graph between compliance and iteration fodet 2
compliance o ) )
MODEL 3: In Topology optimization with a half-ring shaped

Table-3: Comparison for model 2

design domain meshing is done with 8 nodes 82 drikam
element by giving element edge length 0.6 for dawh and
total number element is 199@.able IV shows the final
compliance obtained in the case of ANSYS based @€ a

adaptive refinement approach.

Table- IV
M ethod ANSY S based adaptive
ocC refinement
approach

Compliance 0.05379 0.057

Iteration 33 64

(@) Percentage difference in 9.063

compliance

Table-4: Comparison for model 4
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Fig-6: Optimal shapes obtained by (a) ANSYS bas€d@d

(b) adaptive refinement approach
@
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(b)

Fig-8: Optimal shapes obtained by (a) ANSYS bas€d@d

(b) adaptive refinement approach

0.1

0.08 -

0.06 -

0.04 -

compliance

0.02 -

0 TT T T T T T T T T T T T T T T T T T T T T T T T T TT T T TT1

1 357 9111315171921232527293133

No. of iteration

Fig-9: Graph between compliance and iteration fodeh 3

5. CONCLUSION

The modeling and finite element analysis has beaesemted

for three different models. Topology optimizationasv

performed and according to the results, it can dmecluded
that the results of ANSYS based Optimality Critarishich is
a gradient based method are compared with thosgnellt by
adaptive refinement approach. Compliance valueaimodd by
ANSYS based Optimality Criterion are lower ®/94%-

As
AN,
NN

E-ISSN: 2349-7610

be considered to be the coordinates of the nodeésnasizing
optimization, any physical dimensions. The objextinariable
in both cases can be the volume of the structurateival

optimization approach will be considered for futuesearch.
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